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Abstract

To prevent malicious applications from causing harm to the user of a de-

vice, the Android platform has a permission model. Applications are required

to possess permissions when they want to perform operations that may incur

monetary cost or violate confidentiality and integrity of personal data stored

on the device. One of the resources that has been protected by a permission is

access to the Internet. In practice, 60% of the applications that are available

in the Android market request this permission, giving them access to commu-

nicate with any host on the Internet.

This thesis presents the permission model used by Android and the way

it has been implemented. It also discusses several vulnerabilities that have

been identified in existing research literature, including several proposals for

enhancing the model. The contribution of this thesis is the proposal of an en-

hancement to the permission model that allows a more fine-grained Internet

access policy to be enforced, implementing the principle of least privilege to

Internet access by applications on the Android platform. A proof of concept

has been created to demonstrate the feasibility of the enhancement.
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Introduction

The foundation for digital mobile phone technology as we know it today has

started in 1982, when the Confederation of European Posts and Telecommuni-

cations (CEPT) formed the Groupe Speciale Mobile (GSM) with the goal to design

a pan-European mobile telephony technology [13]. By the year 2000, the first

commercial General Packet Radio Service (GPRS) services were launched, allow-

ing mobile devices to interact with the global internet using a packet switched

IP interface1. Faster packet switched interfaces were introduced in the years that

followed.

Alongside the evolution of GSM technology and ubiquitous mobile IP connec-

tivity, device manufacturers succeeded in creating smaller, more powerful and less

power-hungry processing and memory components. Also on the software side, ad-

vances were made, eventually allowing third-party applications to execute on the

device hardware, creating the possibility for end users to extend the functionality

of a mobile device after purchase. According to most sources, this post-purchase

software installation capability is what differentiates a smartphone from ordinary

phones [1, 18, 29].

One of the smartphone platforms that recently gained popularity is Android.

Android was initially developed by Android, Inc., a company co-founded by Andy

Rubin and acquired by Google, Inc. in July 2005 [7]. The Android distribution and

the foundation of the Open Handset Alliance – a consortium of hardware manu-

facturers, software companies and telecom operators, publicly led by Google, Inc.

– were announced in November 2007.

Towards developers, Android is explained as a software stack for mobile de-

vices that includes an operating system, middleware and key applications (see

“What is Android?” in [2]).

For security, Android employs a permission model that enables applications to

request permission to perform actions that may access private information, use

1GPRS actually offers a wireless packet switched interface, capable of carrying any packet switched
protocol, like IPX or X.25. Most operators only deploy IP over GPRS, since IP is used for accessing the
Web and carrying internet mail.
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the mobile network in ways the may incur a monetary cost to the user or may

otherwise cause harm. The model is based on a static set of permissions that an

application states that it needs to function and the user can either choose to grant

those permission or abort the installation of an application.

1.1 Research question

How can the permission model employed by the Android smartphone platform be

improved, such that some known weaknesses are fixed and the existing protection

and usability are preserved?

1.2 Subquestions

In order to formulate an answer to the research question stated in Section 1.1,

several subquestions have been formulated. These subquestions are constructed

in such a way that these can be researched in an ordered fashion. The answers

to those questions are given throughout this thesis and result in an answer to the

research question.

Q1. How is the current Android permission model designed?

The current permission model used in Android has been designed to prevent ap-

plications from performing actions that the user doesn’t consent to. Examples of

resources that are protected by the permission model are access to stored text

messages and contacts, access to the internet and actions that incur a monetary

cost to the user, like sending text messages or initiating phone calls. As a starting

point, this subquestion aims to understand the currently implemented permission

model and is covered by Chapter 2.

Q2. Which platform component(s) contribute to the implementation

of the permission model?

Given the design of the permission model, how is it implemented in the Android

platform? The platform consists of a large number of components that fulfill func-

tional and non-functional requirements, but most components don’t take an active

role in enforcing the permission requirements. For a thorough understanding, this

subquestion aims to provide an overview of the implementation components that

take part in implementing the permission enforcement requirements and is cov-

ered by Chapter 3.
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Q3. Which vulnerabilities are known to exist in the current model?

In order to improve the permission model, it is required to have an overview of

the vulnerabilities that must be addresses by the proposed improvements. Re-

searchers found several weaknesses in the current permission model and those

have been published in existing literature. This subquestion aims to identify the

known vulnerabilities and is covered by Chapter 4.

Q4. Which improvements have already been developed?

Existing literature already describes several improvements that can be implemented

to enhance the current permission model. This subquestion aims to give an overview

of the existing improvements previously proposed by researchers and is covered

by Chapter 5.

Q5. How can the permission model be improved to fix the identified

vulnerabilities?

By identifying the weaknesses that remain unresolved in existing literature, a list

of necessary improvements has been formed. By enhancing the model, addressing

the known vulnerabilities, a final improved model can be designed, which will be

the main contribution of this thesis. This final model has been used to answer

the main research question defined in Section 1.1. This subquestion is covered by

Chapter 6.

1.3 Thesis overview

This chapter finishes with an overview of related projects that will not be refer-

enced later in this thesis, but that are relevant to this topic. Chapter 2 will present

the Android application model and the way applications are secured against each

other. The implementation details of the intercomponent communication frame-

work and the way permissions are enforced is presented in Chapter 3. Chapter

4 presents some vulnerabilities that have been identified in existing research and

Chapter 5 presents some improvements that have been proposed to overcome

some of these vulnerabilities. The contribution of this thesis is presented in Chap-

ter 6, which proposes a solution that allows a more fine-grained policy for Internet

access to be enforced by the Android platform. Finally, Chapter 7 relates the pro-

posed work to the research question and subquestions that have been posed in

Sections 1.1 and 1.2 and lists some topics for future research.
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Figure 1.1: DroidWall configuration activity that can be used by the user to select
what applications are allowed to communicate [20]

1.4 Related work

The security properties of the Android platform – as discussed in Section 2.3 – are

only scarcely documented and spread over several sources. Most information can

be found in the Android developers guide [2], but in any case, all documentation is

limited to textual descriptions. Shin, et al. [22, 23] created a model that captures

some important elements of the permission model and have used the Coq2 proof

assistant to prove certain security requirements they extracted from the Android

documentation. Although their model isn’t complete – e.g. they haven’t modeled

the fine-grained extension of content provider permissions – they already demon-

strated their approach is capable of revealing flaws in the Android permission

model.

1.4.1 DroidWall for Android

The DroidWall [20] project for Android has managed to implement a user inter-

face to the netfilter packet filtering subsystem that is part of the Linux kernel

and follows the principle described in Section 6.1.2. As can be seen in Figure 1.1,

DroidWall enables the user to enable or disable connectivity for individual appli-

2Coq is a formal proof management system that provides a formal language to write mathematical
definitions, executable algorithms and theorems.
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Figure 1.2: Firewall iP prompting the user for network access [14]

cations and allows to define a different policy when connecting over Wi-Fi or a

connection to the mobile operator.

Although technically possible, the DroidWall project does not allow the user

to create a more fine-grained policy as will be possible with the implemented

protection proposed in Chapter 6.

1.4.2 Firewall iP for iPhone

Compared to Android, the iPhone platform introduced by Apple, Inc. has a dif-

ferent security model. On genuine iPhone devices, native applications can only

be installed when they are published in the App Store. An extensive screening

procedure is implemented to ensure no malicious application should be available

in the App Store.

Native applications from other sources can only be installed after removing the

technical limitations using a procedure known as “jailbreaking”. This procedure

involves using vulnerabilities in the operating system in order to be able to replace

system components without triggering other security controls.

One of the applications that can be installed on a jailbroken iPhone is Firewall

iP [19]. The application allows the user to create a fine-grained policy to restrict

the communication capabilities for applications. It can also request the user for

permission when an application requests a new connection that is unknown in the

security policy, as can be seen in Figure 1.2.

No documentation is available that describes how Firewall iP enforces the poli-

cies, but the FAQ page of the Firewall iP website [19] reveals that a library with

5



Figure 1.3: BlackBerry prompting the user for network access [10]

the policy enforcing code is injected into the process of applications using Mo-

bileSubstrate [11]. MobileSubstrate allows developers to inject code into the ad-

dress space of other applications to replace the existing implementation of specific

classes.

Given the information available on the FAQ page of [19] and the functionality

offered by MobileSubstrate, it can be assumed that the functionality of Firewall

iP is implemented in a small library that is injected into other applications, such

that it enforces a network policy when applications request establishing a new

connection.

Under this assumption, it seems possible to bypass the protection mechanism.

Because the code that is used to implement the policy enforcement resides in the

address space of the application that it protects, the application is probably able

to either modify the code (by overwriting the code in memory) or bypass it by

again replacing the implementation of these classes with an implementation that

directly invokes the original code.

1.4.3 BlackBerry device firewall

BlackBerry uses a permission system to allow users or the IT department of a

corporate environment to determine what resources applications are allowed to

access and what privileges they have to perform operations that may be harmful

to the user. This permission system closely resembles the one in Android, with

the main difference being that with BlackBerry the user is able to alter the set

of permissions that is granted to an application, much the same as Apex makes

possible with Android (see Section 5.4).

For several permissions, BlackBerry allows to redirect the communication to a

built-in firewall component, which enables the user or IT department to enforce a

more fine-grained access policy (see Pages 337–340 of [15]). This built-in firewall

6



can be used for internet communications, which contains three modes that can

be applied to an application: always allow, always deny or prompt, with prompt

being the default setting. When prompt mode is enabled, the system will freeze

an application that opens a connection to another host and request the user to

decide whether or not to allow this connection request, as can be seen in Figure

1.3.
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2

The Android permission model

The first step towards understanding and enhancing the Android permission model

is to see how what the general application model looks like and what security con-

structions have been implemented. This chapter will focus on the first subquestion

of this thesis:

Q1. How is the current Android permission model designed?

Figure 2.1: System architecture of the Android platform [2]
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2.1 Android architecture

Figure 2.1 contains an architectural overview of the Android platform as it is pub-

lished in the Android Developers Guide [2]. The components can be grouped in

five classifications that make up the Android platform:

The kernel is the lowest level in the architecture and is currently a standard Linux

2.6 kernel. The kernel contains drivers to operate the hardware of the de-

vice and is responsible for supplying low-level functionalities like threading

and low-level memory management. One of the Android-specific compo-

nents added to the Linux kernel is the Binder, which is used by the platform

to facilitate communication between application components, see Section

3.1.1.

A set of C/C++ libraries is running on top of the kernel. Most of these libraries

are existing open source libraries, tuned for execution on embedded Linux-

based systems.

The Android Runtime contains the Dalvik Virtual Machine (see also Section 2.3.2),

that implements a dialect of the Java Runtime Environment, allowing An-

droid applications and the application framework to be implemented using

Java technology.

The application framework provides the API (Application Programming Inter-

face) that allows applications to interact with the device hardware and with

each other. Core applications shipped with Android, like SMS and contact

applications, use the same framework API that is available to third party

developers, allowing all developers to build powerful and integrated appli-

cations.

Applications run on top of the application framework and are mostly written in

Java. Section 2.2 further describes what components make up an Android

application.

The remainder of this thesis mainly focuses on the Binder kernel driver, the

Dalvik virtual machine, some application framework components and the applica-

tions compartment, since these are specific to Android. The other components are

rather common in Linux-based systems – including servers and desktop computers

– and are therefore out of the scope of this thesis.
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2.2 Applications

Android applications are mostly written in Java1 and are built up using compo-

nents that can be of four types: activities, services, broadcast receivers and content

providers [2, 4, 9]. To explain these component types, an example application is

used that can track the location of friends and notify other applications about

friends that are nearby.

Activities are the fundamental concept that allows interaction with the user. At

any point in time, a single activity is visible on the screen. A simple appli-

cation might have only a single activity, while more complex applications

consist of several activities that, together, form a user interaction model.

Normally, an activity is started at the moment that it needs to interact with

the user and it is stopped as soon as it is not visible on the screen anymore.

The example application might contain an activity that displays all friends

in a list, maybe including their current location. Another activity in this ap-

plication can be a settings screen, allowing the user to modify the behavior

of the application. Yet another activity can be a form to add a new friend to

the application.

Services are components that are not visible to the user, i.e. that don’t have a

user interface. The lifetime of a service is therefore not automatically linked

to the visibility of user interface elements, but controlled by the operating

system in response to the need of the service and available resources. Appli-

cations can bind to a service that is already running in order to communicate

with them. When a service isn’t already running when an application binds

to it, the Android platform will start up the service.

In the example application, the component that receives location informa-

tion about friends and updates this location in the local storage and/or in-

forms other application about friends getting nearby or farther away is a

service. It runs in the background and doesn’t interact with the user itself.

Broadcast receivers also don’t have a user interface, but are designed to react to

events, such as a change in timezone or a battery running low. Broadcasts

can be sent by both the platform and components or third party. Broadcast

receivers may bind to services in order to start an operation after receiving

a broadcast or may start an activity to initiate interaction with the user.

Again using the above example, a broadcast receiver can be a component in

a third party application that will be informed when the location of friends
1The Native Development Kit (NDK) allows Android applications to be written partly or entirely

in a lower level language, enabling applications that have higher performance requirements than can
be offered when running code in a virtual machine.
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changes. When the service notices this event, it sends a broadcast, which

will trigger the broadcast receiver.

Content providers provide an interface to applications to access data provided

by the content provider application. Often, a content provider uses the file

system or an SQLite database to store the data, but any method that’s ap-

propriate for the type of data is acceptable.

The example application needs to store the tracking details and current lo-

cation of friends. This information is probably stored in a database. To give

other components in the example application – or even components in third

party applications – access to this information, a content provider can be

used.

When one of the components of an application needs to run and the applica-

tion is not already started, a Linux process running the Dalvik VM is created and

the component will run in this process. By default, all components of a single

application run in this process, but any application is free to start new processes

and run arbitrary Java and non-Java code.

2.3 Android security model

Android incorporates several mechanisms to prevent applications to adversely af-

fect each other’s operations [2, 4]. By running applications in a sandbox, the only

way for two applications to communicate is through explicitly shared resources.

Access to those shared resources is guarded by a permission model. Applications

don’t have access to any resource by default, all required permissions must be

requested at install time.

2.3.1 Application sandbox

The application sandbox is implemented in Android by running each application

in an individual Linux process and allocating a unique user ID for each application.

The Linux kernel manages access to files and other objects in the file system using

the standard access control procedures used in UNIX systems2. As a result of this,

files created by one application are not readable by other applications.

One exception to this general rule exists: two applications that are created

by the same developer can request a shared user ID. The requirement that the

applications are created by the same developer prevents malicious developers to

2In UNIX, for every object in the file system, an owner, a group and a file mode is stored. The file
mode contains permissions bits, specifying read, write and execute access permission for the principles
“owner”, “group” and “other” [27].
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Binder
uid 1000

uid 1001

uid 1002

uid 1001

No interaction
across user IDs

Interaction through
binder interface

Interaction between
apps with same user ID

Figure 2.2: An example of a set of four installed applications in a sandboxed envi-
ronment. Two applications created by a single developer have requested to share
a user ID and are therefore able to exchange information using the file system.
Arrows indicate interaction paths; the direct interaction between the application
with uid 1002 and an application with uid 1001 is not possible. The only way for
the other applications to communicate with components outside of the sandbox is
by using the binder interface (see Section 3.1).

circumvent the permission system by requesting a shared user ID with a sensitive

application. To ensure that the applications are created by the same developer,

Android verifies that both applications are signed using the same certificate.

Application components running in different Linux processes are able to com-

municate by using a standardized inter-component communication framework.

The ICC framework employed by Android builds upon the OpenBinder framework

[17]. A more technical description of the binder framework can be found in Sec-

tion 3.1. Figure 2.2 shows how applications are able to interact using the binder

framework.

2.3.2 The role of the Dalvik VM

One of the main requirements of the Dalvik VM is to execute bytecode under the

stringent memory requirements imposed by embedded systems; this has therefore

been one of its main design goals [6]. The bytecode that Dalvik operates on is

not identical to standard Java bytecode and therefore the Dalvik .dex file format

is incompatible with standard Java .class files. The Android SDK includes the dx

tool [2], that allows developers to convert .class files to .dex files.

While it may be tempting to assume that Dalvik acts as a security sandbox, this

isn’t actually the case. Quoted from the “Security and Permissions” sections of the

Android Developers Guide [2]:

13



The kernel is solely responsible for sandboxing applications from each

other. In particular the Dalvik VM is not a security boundary, and

any app can run native code (see the Android NDK3). All types of

applications — Java, native, and hybrid — are sandboxed in the same

way and have the same degree of security from each other.

Despite Dalvik not being a security mechanism, relying on the Java program-

ming language for application development enforces type-safety and prevents

common riskful programming mistakes, like buffer overflows, memory leaks and

decreases the possibility of remote code execution in general. Since applications

may use non-Java code, it should be noted that these programming errors can

still occur in Android applications. Vulnerabilities might also exist in the C/C++
system libraries and those might be exposed through official API’s towards Java

applications.

2.3.3 Declarative permission model

Besides user ID sharing, several communication mechanisms are available for ap-

plications that need to interact. These mechanisms are defined by the Android

platform and are protected by a permission checking system. The permissions

that an application needs are declared in a manifest file, which is part of the appli-

cation package. Examples of permissions defined by Android are the INTERNET4

and the SEND_SMS permissions.

During installation of the application, Android informs the user about the de-

clared permissions, such that the user can decide whether or not to proceed with

the installation. In the current model, it is not possible to install an application

and grant or deny individual permissions. The only way to deny a permission is

by aborting the installation procedure. Consequently, the only way to revoke a

permission is by uninstalling the entire application.

2.3.4 Implicit permission checking

Besides explicit checking of granted permissions by application code, the Android

platform implicitly verifies whether an application possesses a certain permission

on a specific set of inter-component operations. The following overview describes

what operations invoke the implicit permission checking [2]:

Activities can be started by components by invoking the startActivity()

method of the Context class or the startActivityForResult()

3The Android Native Development Kit
4The full name of the permission is android.permission.INTERNET, but for the sake of

brevity the android.permission. prefix is omitted in this thesis.
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(a) Application installation screen (b) Application info screen

Figure 2.3: Permissions screens for the Fring application. Screen (a) is displayed
when the user selects the application in the Android Market, such that he can make
the decision whether or not to continue the installation. Screen (b) is displayed
when the user opens the application information activity in the settings part of the
Android system. Notice that the SEND_SMS permission is displayed as ‘send SMS
messages’ under the ‘Services that cost you money’ header.

method of the Activity class. These methods check whether the

caller has the required permissions and when this is not the case, a

SecurityException is thrown.

Services can be managed by invoking the startService(), stopService()

and bindService() methods of the Context class, which all check

whether the caller possesses the required permissions and throw a

SecurityException when this is not the case. Note that after the

bindService() successfully returned, the caller can directly invoke ex-

posed methods on the service, without implicit permission checking by the

Android platform. However, services can still use explicit permission check-

ing by invoking permission checking methods on the PackageManager or

Context objects.

Broadcast receivers can specify the permission that the sender of the broadcast

must have. Broadcasts that are sent by components that don’t have the spec-

ified permission are silently dropped by the platform. The other way around,
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senders can specify the permission that receivers must have. Receivers that

don’t have the specified permission are not informed about the broadcast.

Since broadcast delivery is asynchronous, no exception is thrown in the case

of missing permissions, the broadcast will just be ignored silently.

Content providers can be used to read from and write to content storages using

methods available in the ContentProvider class. The available commu-

nication methods are protected by two distinct permissions: one permission

that is required for reading data using the query() method and another

permission that is required for writing using the insert(), update() and

delete() methods. Android enables components that have access to a

content provider to extend those permissions to other components in a fine-

grained manner, which is described in more detail in Section 2.3.5.

2.3.5 Content permissions

In the packaged manifest file, an application can declare it needs permission to use

a content provider. This declaration is for either the read permission or the write

permission or for both. Once the user grants these permissions during installation

of the application, the permission is valid for all data that is managed by the

content provider. This application may now request a component in a different

application to perform a task on a specific item managed by this content provider,

e.g. an e-mail application may declare it needs read access to the attachment

content provider and it requests the image viewer to display an image that was

received as an attachment to an e-mail.

When using a purely declarative permission model, a dilemma occurs for the

developer of the image viewer. If he chooses not to declare that the component

needs the read permission, it won’t have access to the attachment content store

and therefore the component won’t be usable to the e-mail application. However,

if the developer chooses to declare the read permission requirement, the com-

ponent will have access to all attachments stored by the content provider. This

last option may allow yet another component to abuse the image viewer compo-

nent to access the attachment content provider without declaring permissions to

it. Even when the developer decides to declare it needs read permissions to con-

tent providers, he probably doesn’t know which content providers the component

might need access to, now or in the future.

For this scenario, the Android platform allows an application that has permis-

sion to use a content provider to extend this permission to the component that it

requests to act on a content item, such that only access to this single content item

is granted. Figure 2.4 shows how this applies to the given example: the e-mail
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E-mail storage

Messages

Attachments

E-mail viewer

Message viewer
(activity)

Image viewer

MESSAGES_READ
ATTACHMENTS_READ

Viewer
(activity)

(empty)(empty)

a

b

c

Figure 2.4: Extension of content permissions. The image viewer applica-
tion doesn’t possess any permission to access the attachment content provider.
The message viewer activity accesses the message store (a), using the
MESSAGES_READ permission granted to the application. When it starts the im-
age viewer to display an image from the attachment content provider, it can pass
on the required ATTACHMENTS_READ permission for exactly this single image (b).
During the period that the viewer activity is active, the image viewer application
can read this single image (c), but doesn’t have access to other items managed by
the attachment content provider.

application can extend its read permission to the image viewer on the particular

attachment that it requests the image viewer to display.

2.4 Conclusion

This chapter has introduced the Android platform, which is based on the Linux

kernel. Individual applications are mostly written in Java and each run in their

Java virtual machine, running in its own process. Since application have a unique

user ID, the process boundaries actually act like sandboxes, preventing applica-

tions to influence each other directly. Applications can use functionality offered by

other applications and by components of the Android platform through a standard

interface, which enables the system to enforce a declarative permission model. To-

gether, the sandbox and the permission model ensure security in such a way that

applications are unable to perform actions that are not permitted by the user.
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3

Implementation details of the permission model

After forming a high-level understanding of the Android application model and

security constructs, which are explained in Chapter 2, this chapter focusses on the

next subquestion of this thesis:

Q2. Which platform component(s) contribute to the implementation of

the permission model?

While the knowledge required for application developers is discussed in the

Android Developers Guide [2], the implementation details are not extensively dis-

cussed in documentation and other research papers. Therefore, most of the knowl-

edge discussed in this chapter is based upon source code analysis. Instructions to

obtain the source code are published by the Android Open Source Project1.

3.1 Inter-component communication

Application components running in different Linux processes are able to com-

municate by using a standardized inter-component communication framework.

The ICC framework employed by Android builds upon the OpenBinder framework

[17], which has originally been designed and developed by Be Inc. and more re-

cently by Palm, Inc. On top of this framework, Android has built two layers: the

first transforms low-level communication with the kernel driver into a communi-

cation paradigm in the Java environment and the second subsequently wraps the

developer-unfriendly generic paradigm in a clean object oriented interface. Figure

3.1 shows the Java-to-Java path of an inter-process method invocation.

3.1.1 ICC kernel driver

The Linux implementation of the OpenBinder framework that has been incorpo-

rated into Android contains several components that together allow Java objects to

communicate across virtual machine and process boundaries. At the lowest level,

1See http://source.android.com/
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Process A Process B

Developer-
friendly

interface

Generic
IBinder

interface

Kernel driver

BinderProxy
implements IBinder

UserProxy
implements IUser

android_util_Binder
C++ code

JNI

UserStub
implements IUser

extends Binder

UserImpl
extends UserStub

android_util_Binder
C++ code

onTransact()

transact()2

3
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1

Figure 3.1: Overview of inter-process communication between Java objects in two
separate processes. The class names in this figure are the result of an IUser.aidl
interface definition. When a method is invoked on the UserProxy object in
process A (1), transact() is invoked on the BinderProxy (2), forwarding
the Parcel through the kernel driver towards the other process (3,4). The
onTransact() method (5) unmarshalls the parameters in the received Parcel
and invokes the appropriate method in the UserImpl class (6), which must be
implemented by the developer of the application running in process B.

a binder driver is included in the kernel. This driver is exposed to userspace pro-

cesses by means of the /dev/binder filesystem object, which allows interaction

with the kernel driver using ioctl2 system calls.

The binder driver is responsible for passing messages across processes. Since

those message may contain references to objects that can only live in a single

process, the driver also manages those references and rewrites messages to ensure

the receiving process knows how to interact with these objects. When interacting

with the driver, objects that live in the address space of the interacting process are

referred to by using a pointer, while objects that live in another address space are

referred to by using an opaque handle, which is just a unique integer serving as a

key into a mapping table.

Before a message is passed from the driver to a process, any object reference is

translated into handles that are known inside the receiving process. At this point in

time, the driver may allocate a new handle if the given object hasn’t been commu-

nicated towards the receiving process before. Likewise, any handle is translated

into either a pointer to the object if the referred object lives in the address space

2In UNIX, ioctl operations allow userspace processes to interact with kernel objects beyond the
limitations of the standardized file operations like those offered by the read and write system calls.
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of the receiving process, or into a handle that is valid for the receiving process.

Consequently, a handle can only be interpreted in the context of a single process

and a process is therefore unable to obtain a handle to an object that is not sent

to it.

3.1.2 Interfacing the kernel driver with Java

Java code running inside the virtual machine cannot directly access non-Java li-

braries or system calls. To interface the Java environment with functionality in

the non-Java environment – i.e. native code – the Java Native Interface (JNI)3

is available. Using a standardized interface, developers can create native code

which interacts with the virtual machine. Using JNI, several communication paths

become available:

• Native code can access the values of members fields of Java classes by calling

functions like GetObjectField or SetIntField;

• Native code can invoke Java methods by calling functions like

CallBooleanMethod, which will run the selected Java method in the VM;

and

• Java code can invoke methods that have been marked with the native

keyword in the class definition, which will instruct the VM to call a defined

function in native code.

The core Java interface for inter-process communication is the IBinder, which

has two major implementations: the Binder class for “incoming” communica-

tion and the BinderProxy class for “outgoing” communication. The core of the

IBinder interface is the transact method, which accepts a numeric argument

specifying the operation to execute and two Parcel objects to carry the input and

output messages.

In the BinderProxy implementation, the transact method is invoked

through JNI and implemented in the C++ file android_util_Binder.cpp.

Eventually, this causes the contents of the first Parcel to be transferred to the

kernel driver, which rewrites the object references and passes the message on to

the receiving process.

In the receiving process, the message is reconstructed into a Parcel and

passed to the onTransact C++ function, which uses JNI to invoke the

execTransact method on a Binder object. At this point, the Parcel object

3JNI is developed by Sun as part of the Java standard and is therefore not specific to the Android
platform or the Dalvik VM.
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is transferred into the Java environment and the onTransact method is invoked,

which contains the implementation to perform the requested operation.

When the object resides in the invoking process, the transact method is di-

rectly invoked on the Binder implementation, which update the Parcel objects,

such that they’re in the same state as if they were just received through JNI and

invokes the onTransact method. With this construction, developers can interact

with local IBinder objects in the same way as with remote IBinder objects.

3.1.3 Developer-friendly communication layer

While the IBinder interface described in Section 3.1.2 is the central communi-

cation point with other processes, it requires flattened messages to be exchanged

using Parcels. This requires communicating objects to marshall and unmarshall

information, which is a tedious and potentially error-prone task when done man-

ually by developers.

The Android SDK (Software Development Kit) contains the code generator

tool aidl (see the AIDL appendix in [2]). The developers defines the interface

between the components in an interface definition file, which the aidl tool uses

to generate two Java classes: a proxy and a stub.

The stub is an abstract4 class and extends the Binder class. Its onTransact

method unmarshalls the Parcel that it receives, invokes the appropriate method

on the implementation class and marshalls the results back into a Parcel object.

The developer now just needs to extend the stub class and implement all abstract

methods, which are the ones defined in the aidl interface definition.

The proxy is a class that implements all methods defined in the aidl interface

definition. All those implementations marshall the invocation arguments into a

Parcel object, which is passed to the transact method of an IBinder object.

The transact method forwards the Parcel through native code and the binder

kernel driver towards the remote object, where a stub performs the method invo-

cation on the actual object. The reply Parcel object is forwarded in the opposite

direction. The proxy unmarshalls the data from this object and returns control to

the invoker. A developer can now just invoke a method on the proxy object to

cause a method invocation on the remote object.

3.2 Enforcing permissions

Section 2.3.3 introduced the declarative permission model implemented in the

Android platform. Enforcing those permissions is done by the PackageManager

4In Java, abstract classes may declare methods without an implementation. Abstract classes can
therefore not be instantiated, but must be extended by a subclass which contains at least an imple-
mentation for the abstract methods.
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Figure 3.2: Permission checking when sending an SMS message using the
SmsManager API. The SMS message is submitted to the telephony process using
the binder interface (1). Before forwarding the message to the SMSDispatcher
(3), the SMS service verifies whether the sender possesses the SEND_SMS permis-
sion by calling the enforceCallingPermission() method on the Context
class (2).

component, which runs in the system_process process that has been spawned

during the boot procedure of an Android system. The PackageManager reads

the permissions that are requested by applications from the permanent stor-

age and keeps them in memory. When an application wants to verify whether

a certain application has been granted a specific permission, it can invoke the

checkUidPermission() method through the binder interface. This method re-

turns either PERMISSION_GRANTED or PERMISSION_DENIED and the developer

of the service must ensure that the verdict is correctly used when deciding on how

to proceed.

When an application invokes a method on an object in a remote process, the

implementation of this method can easily verify whether the calling process has

been granted a certain permission by invoking the checkCallingPermission()

method or the enforceCallingPermission() method on the Context class,

which passes the user ID of the invoking process to the checkUidPermission()

method. This relieves the developer of an application of the task to determine
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which process has invoked the method and what application the given process

belongs to. Figure 3.2 shows the permission checking flow when an application

invokes the sendTextMessage() method on an SmsManager object.

3.3 Conclusion

To allow applications to communicate, an interprocess commucation framework

based on the OpenBinder framework is used in Android. A kernel driver handles

communication of basic data types between different processes and is also capable

of passing around references to objects residing in the address space of a single

process. A Java Native Interface library forms the glue between the interface to

the kernel driver and the object oriented Java environment. Since Android sys-

tem components don’t run in the same process as the application, the interprocess

communication framework must be used to invoke those components. The indi-

vidual components can verify whether the process that invoked an operation has a

certain permission before actually performing the requested operation, such that

application are unable to perform operations that are not permitted by the user.
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4

Known vulnerabilities of the permission model

In Chapter 2, the Android permissions model was introduced and Chapter 3 dis-

cussed the implementation details of this model. Several vulnerabilities exist in

this model, that have been presented in research papers. This chapter focusses on

these vulnerabilities and therefore on the third subquestion:

Q3. Which vulnerabilities are known to exist in the current model?

4.1 Permission-free operations

Most operations that might result in harm to the user, annoyance, monetary cost

or privacy violations require permissions that the user must grant to an application

before an application is allowed to initiate those operations. There are however

some operations that have been identified by researchers that can incur a cost,

evoke privacy violations, or otherwise cause annoyance and which are not pro-

tected by any permission. Therefore, these operations can be performed by any

installed application.

One of the earlier reported operations that doesn’t require a permission was

the fact that arbitrary applications were able to initiate a phone call through the

Phone application. Using the documented API1, initiating a phone call requires

the CALL_PHONE2 permission. However, it was possible to instruct the standard

Phone application to start dialing a number immediately after activating the ap-

plication. When the telephony framework verifies the permissions of the caller, it

would identify the Phone application as the caller and discover that it possesses

the CALL_PHONE permission and would therefore proceed with connecting the

call [8].

1See the Android developers guide [2]
2Without the android.permission.CALL_PHONE permission, an application remains able to

open the Phone application and prefill a phone number, allowing the user review the number and
initiate the actual calling.
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AudioManager

setVibrateSettings()

getVibrateSettings()

Vibrator device

getVibrateSettings()

Figure 4.1: Using vibrator settings as covert communication channel. The
AudioManager maintains the vibrator settings, which the vibrator device uses
to decide whether the vibrator hardware is activited. A data gathering application
can freely invoke setVibrateSettings() to modify the stored information and
a data forwarding application – e.g. an application with the INTERNET permission
– invokes getVibrateSettings() to read the information.

Google fixed this issue by adding a permission check in the Phone application,

requiring the initial caller to possess the CALL_PHONE permission before activat-

ing the actual call. Therefore, since Android 1.5 this vulnerability no longer exists.

While the CALL_PHONE vulnerability allowed an application to contact pre-

mium rate phone numbers, enabling a revenue stream for malicious application

developers, some other vulnerabilities – operations that don’t easily offer such

a revenue stream – are not yet fixed. Two examples are changing the vibrator

settings and changing call volume settings. While most settings require a permis-

sion to be changed – e.g. MODIFY_AUDIO_SETTINGS, WRITE_APN_SETTINGS

or WRITE_SETTINGS – any application can change the vibrator settings and the

call volume settings [21].

At first glance, changing these settings would annoy the user at worse, but

since the settings changes cannot be traced to an individual application, it will

prove difficult for a user to locate the cause of his annoyance. These configu-

ration settings can be read by another application, effectively creating a covert

communication channel3 between applications [21], e.g. by repeatedly turning

on and off the vibrator, an application can transmit single bits towards a separate

application with the proper privileges to forward the leaked information towards

an adversary. Figure 4.1 displays the components that are involved in this sce-

3A covert channel is a type of security attack that allows an attacker to transfer information across
a boundary in such a way that access control on the channel is not enforced by a security component.
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nario; the data gathering application doesn’t require any suspicious permissions,

while the data forwarding component can be hidden inside any application for

which the INTERNET or the BLUETOOTH permission can reasonably expected to

be necessary.

Another method to export data from an Android device without needing a

communication-enabling permission is by opening the webbrowser [21]. Although

this is not a covert channel, it easily allows a small amount of data to be exporting

by encoding it into the URL, which is sent to a webserver to request some content

to be displayed. To cover up the data leakage, a malicious webserver could – after

storing the received data – redirect the webbrowser to a random webpage, making

the user believe the device acted on a accidental click on a banner or link.

4.2 Permission-related shortcomings

The vulnerabilities discussed in the previous section are issues that are specific to

operations that don’t require special permissions; they can be solved by perform-

ing a permission check when the discussed APIs are used. However, some more

interesting vulnerabilities arise when discussing operations that do require special

permission.

4.2.1 Permission granularity

Some important decisions must be made when designing a permission-based sys-

tem, including decisions about the level of granularity to use for permissions in

the system. In the design of the permission granularity, some interesting decisions

have been made:

Location information can be obtained with a high resolution using GPS hard-

ware or with a lower resolution using location information about GSM

cells and WiFi access points4. To use the former, application need the

ACCESS_FINE_LOCATION permission, while the latter is protected by

the ACCESS_COARSE_LOCATION permission. Coarse location information

would be sufficient for application like a weather service, while fine location

information is necessary for navigational applications. In practice it seems

that many application developers have decided to request both permissions

[3].

4Google has determined the location of a large number of WiFi access points around the world,
which can uniquely be identified by the MAC address. Obtaining the location of an Android device
using WiFi involves listing the MAC addresses of visible access points and transmitting this list to a
Google server, which will return an location approximation based on the stored data.
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Audio recording can be performed by applications using the MediaRecorder

class that have requested the RECORD_AUDIO permission. An application

that has been granted this permission can at any time of the day and in

any state of the device decide that it start recording audio, without the user

getting any notification of this action. In particular, audio recording can

commence when a phone call has started, effectively allowing an application

to eavesdrop on the communication of a phone call [21].

Internet access from an Android device is possible using several communication

channels, such as the packet network offered by the telephone operator net-

work, a WiFi wireless network or a bluetooth connection. Different commu-

nication channels have different performance characteristics and may incur

different monetary costs, e.g. while a WiFi connection may be free to use

and offer much bandwidth, the telephone operator network may by much

slower and may actually charge the user for data exchange; the monetary

burden might even fluctuate depending on the location of the device. Ap-

plication that have been granted the INTERNET permission are able to com-

municate with any host on the internet, have no limits on the amount of

data they are allowed to exchange and are able to use any communication

channel available.

Content provider access is controlled by a pair of permissions: one permission

for read access and a separate permission for write access. For example,

an application requires the READ_SMS permission to be able to read text

messages stored on the device, while the WRITE_SMS permission is required

to modify the message store [3].

It is interesting to note that location and content permissions are rather fine

grained compared to audio recording and internet access. Although the actual

permissions are still static – see Section 4.2.2 – the more fine grained permission

design for some functionalities gives users more control over what they want to

allow an application and what they want to deny.

The INTERNET permission is an interesting example of a coarse grained per-

mission. In fact, over 60% of applications request access to the internet [3]. Some

applications even don’t need the permission for the core functionality, but use the

permission to be able to pull advertisements from the internet in order to generate

a revenue stream for the developer of the application. Since the declaration of in-

ternet access is this common, users are effectively trained to accept this permission

and are blinded to the implications caused by allowing an application access to the

network, such as the monetary cost of communication and the possible leaking of

information stored on the device.
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4.2.2 Permission lifecycle

During development of an application, the developer declares the permissions

the application needs in a manifest file. Before downloading and installing an

application, the user can review the declared permissions and decide whether to

proceed with the procedure. In the case the use decides that the permissions

the application requests are broader than he is willing to allow, the installation

procedure is completely aborted and no application code will be executed.

However, when the user proceeds with the procedure, all requested permis-

sions are granted. As a result of this procedure it is not possible to allow the

installation of an application, while only granted a subset of requested permis-

sions [12, 16]. Since most users don’t know what operations are connected to

each permission, it is difficult to objectively assess the risks involved with grant-

ing certain permissions. The choice a user must make is binary: accept a set of

unknown risks in order to obtain the needed functionality or abort the installation

procedure.

Related to this problem is the fact that permissions that have once been granted

to an application cannot be revoked afterwards. When a user determines that

an application performs unwanted operations or learns about the implications of

granting applications certain permissions, the only available option to limit per-

missions is to uninstall an entire application [24].

4.2.3 Permission mismatching

In [24], Shin, et al. present a flaw in the permission scheme that is partly caused

by the fact that permissions cannot be revoked. The flaw they describe enables an

adversary to obtain a certain permission P on a third-party application by mislead-

ing the user. Three applications are involved in the scenario: a decoy application

AD, the exploit application AE and the protected application AP . The protected

application makes an API available to other applications to interact with it, but

requires those interacting applications to possess the permission P, which is a

permission that isn’t known to the Android system before installation of the appli-

cation.

To understand the vulnerability, an example scenario is described. The

protected application AP in this case is an application that stores credit

card information in a protected storage and the permission P has identifier

READ_CREDITCARDS5. The exploit application AE is designed to obtain the credit

card data stored by this application, such that it can forward this valuable infor-

mation to the attacker. Before AP is installed, the Android system doesn’t have

5The permission identifier would have a prefix – e.g. com.visa.android.READ_CREDITCARDS
– but for the sake of brevity it is omitted.
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knowledge about the P permission, since this permission will be introduced by

the AP application. Among other information, a textual label is introduced that

can be presented to the user, e.g. “Read credit card information”.

The decoy application AD introduces information about a different permis-

sion P ′. The permission is a different permission, but it also has the identifier

READ_CREDITCARDS. The permission is different, because it introduces the per-

mission with a false label – e.g. “Read system time” – but the system treats it as

the same permission, since it has an identical identifier.

Once the AD application is installed on a device, when installing the ex-

ploit application AE , the user will be asked whether or not to grant the

READ_CREDITCARDS permission. This permission is presented to the user as

“Read system time” (note that the internal identifier is not displayed to the user,

as can be seen in Figure 2.3 on page 15). Since this textual description sounds

harmless, the user probably grants the permissions and finishes installation.

At this point, the exploit application AE possesses the permission that is identi-

fied by READ_CREDITCARDS. When at this point the decoy application AD is unin-

stalled and the official application AP is installed, AE still possesses this permission

and is therefore able to read credit card data from the protected application.

Shin, et al. reason that this flaw is possible because of three shortcomings:

1. once a permission has been granted to an application, it cannot be revoked

(see Section 4.2.2);

2. as a result, two different permissions with the same internal identifier can

exist in a system; and

3. no rule or restriction in naming permissions exists.

4.2.4 Using permissions

Applications that possess the correct permissions, can initiate the operations that

require those permissions without further approval of the user and often even

without the user noticing that such operations take place. For example, recording

sound using the microphone of a device can be performed without feedback to the

user.

As a demonstration, Schlegel, et al. built an application that listens to

PHONE_STATE broadcasts to notice when the user initiates an outgoing call and

automatically starts recording the audio as soon as it happens [21]. Although

such handling of the event of an outgoing call can be desired by the user - e.g. for

a call recorder application – the Soundminer application is clearly designed for a

malicious purpose.
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4.3 Executing applications

For applications, there are several ways to become active, either on request of the

user or another running application, or in response to certain events. From a se-

curity perspective, it is interesting to note that an application can become active

without the user explicitly requesting for this to happen or even being able to no-

tice this. For example, applications can declare an interest in BOOT_COMPLETED,

which are broadcasted directly after the device finished the system boot sequence

[2]. Fortunately, applications need to possess the RECEIVE_BOOT_COMPLETED

permission to receive these broadcasts and therefore a user can decide during

application installation whether this request is plausible.

However, adversaries can distribute applications that can be started automat-

ically by the Android system when certain events occur. The specific events the

applications want to be started can be listed in the manifest file. Only a subset of

these events require an application to possess certain permissions; the remaining

events can be acted upon without specifying a permission. From the set of events

that can be acted upon without having a special purpose, a few can even be speci-

fied in the manifest file, which are read by the Android system during installation

and will trigger the execution of an application when it isn’t already running at the

moment the event occurs [21]. The list below presents a non-exhaustive overview

of events that may cause the system to execute an application.

Power-related events Every application can receive notifications on power

changes, e.g. AC power events trigger broadcasts (POWER_CONNECTED and

POWER_DISCONNECTED). Battery capacity changes are also broadcast when

they pass a certain threshold (BATTERY_LOW, BATTERY_OKAY). No permis-

sions are required to receive those broadcasts [2]. Unless a device is al-

ways and only connected to AC power, an application can make use of these

events to auto-start itself, without holding any permission and without hold-

ing the RECEIVE_BOOT_COMPLETED permission in particular.

Incoming text messages When a text message is received by the sys-

tem, SMS_RECEIVED is broadcast. Applications need to possess the

RECEIVE_SMS permission to receive those broadcasts [2].

Phone state changes When the state of the phone changes – e.g. on incoming or

outgoing calls – PHONE_STATE is broadcast. Applications need to possess

the READ_PHONE_STATE permission to receive those broadcasts, but for

certain applications the need for this permission might feel plausible to a

user [2, 21].
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4.4 Conclusion

Some vulnerabilities exist in the current permission model, some of which have

been presented in this chapter. First, certain device settings can be changed with-

out having any specific permission, which enable some covert channels for mali-

cious applications to communicate. Second, existing research have raised a dis-

cussion on the granularity of certain permissions. Third, permissions are granted

for the entire lifecycle of an application; it is therefore not possible in the cur-

rent model to revoke a subset of the requested permissions from an application.

Fourth, the way permissions are identified and managed in Android allows a mali-

cious developer to “hijack” a permission identifier. Finally, several permissions are

available that allow an application to register itself in such a way that the appli-

cation is (re-)launched when certain events happen, which may not be obvious to

the user.
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5

Existing improvements to the permission model

Several vulnerabilities in the Android permission model have been discussed in

Chapter 4. Research projects have designed improvements to the existing model.

This chapter focusses on these improvements and therefore on the fourth subques-

tion:

Q4. Which improvements have already been developed?

5.1 Changing permission granularity

Section 4.2.1 discusses aspects of the current level of permission granularity. Some

of these aspects present permissions that are too coarse-grained to be effective. In

particular, the RECORD_AUDIO and INTERNET permissions are both all-or-nothing

permissions. For both of these permissions, several potential solutions have been

offered. Also, more general solutions are offered that may be suitable for other

permissions.

Audio recording is protected by only a single permission: the RECORD_AUDIO

permission. When an application possesses this permission, it is allowed to acti-

vate audio recording at any time, even during phone calls. Two possible solutions

are presented by Schlegel, et al. [21]: phone application isolation and finer-

grained sensor access.

Isolating the phone application in such a way that the phone and any other

application cannot simultaneously access the same resources. For example, the

microphone, speakers and screen cannot be accessed by any application during a

phone call, since the phone requires access to those peripherals. The downside of

this approach is that this will prevent the functionality of certain applications, like

a voice call recorder or an automatic speech translator.

The other proposed solution is defining permissions on a finer-grained level.

For example, the RECORD_AUDIO permission could be restricted such that it only

applies to recording audio in a state where no phone call is active, while at the
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same time a new permission can be introduced that allows audio recording during

an active phone call.

Barrera, et al. reported that over 60% of applications request the INTERNET

permission [3]. Probably most of them don’t even need access to the Internet for

the core functionality, but rely on this permission to retrieve advertisements from

the Internet, which are displayed when the application is running to generate

revenue for the application developer.

By using finer grained permissions for internet access, users could allow ap-

plications to access a specific subset of the internet, instead of allowing an all-or-

nothing approach. In [3], Barrera, et al. propose a hierarchical permission scheme

that could enable the developer to request access to a specific hostname or set of

subdomains, e.g. request access to *.admob.com in order to retrieve advertising

data.

5.2 Kirin security policy invariants

Enck, et al. [8] have designed a framework that allows a device to enforce pre-

defined security requirements before allowing an application to be installed. The

framework – named Kirin – is invoked when the system commences the installa-

tion of an application package.

Kirin reads the application manifest file and transforms the requested permis-

sions into a set of Prolog1 facts. Preprocessing steps add additional facts to this

set, to make sure all declarative aspects of the Android security model are covered;

a complete overview of these facts are listed in Section 4.2 of [8].

Security policies – which are formally a set of invariants that must hold both

before and after installation of an application – are encoded as predicates in the

Prolog program. The final Prolog program is formed by combining the facts that

are derived from the package manifest, the previously derived facts of the Android

platform and already installed applications and the predicates that make up the

security policies. By feeding this program into a Prolog engine, it is possible to run

queries to evaluate the security policies against the information extracted from

a to-be-installed application package. If one or more mandatory queries return

failure, the system can deny installation of the package.

5.2.1 Modeling security policies in Kirin

In the descriptions below, P denotes a security policy, S denotes the set of all

subjects, O denotes the set of all object and R denotes the set of all permission

1Prolog is a general purpose logic programming language. Prolog programs are expressed in terms
of facts and predicates, which are used by a Prolog engine when a query is issued over a given program.
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identifiers. In the Android model, the subjects are the applications that can be

granted a set of permissions and the objects are components for which permissions

requirements can be declared. Note also that two objects are defined for each

storage provider: one object that identifies reading from the storage provider and

one that identifies writing to the storage provider.

Declarations from the package manifest file are transformed into Prolog facts

of the following forms:

requires(o, r) when the manifest file contains a declaration for the requirement

of permission r ∈R to interact with application component o ∈ O.

has_perm(s, r) when the application s ∈ S possesses the r ∈ R permission.

contains(s, o) when the application s contains component o.

Subsequently, security policies are typed as P : S × O × R → {true,false}.
The policy operator P is defined as P(s, o, r) = requires(o, r)∧has_perm(s, r).
Enck, et al. have created three invariant building blocks – called patterns – that

can be combined to design more complex security policies. The three patterns are

reproduced in the following overview, each with an example that has been taken

from [8]. Appendix A of [8] contains a listing of the Prolog program that encodes

these three example patterns.

Simple access control checks to determine whether an application has the per-

mission required to access a specific object. For example, the following

predicate encodes the question “Can application s acquire write access to

ContactsProvider?”:

pat
1
(s) = ∃r ∈ R : P(s,ContactsProvider_w, r)

Mutual exclusion allows a security policy to disallow an application to obtain

two permissions that are regarded undesired to be granted to a single ap-

plication. For example, the following predicate encodes the question “Can

application s be installed such that if it can read from ContactsProvider, then

it cannot connect to the network?”:

pat
2
(s) = ∀r1 ∈ R,∃r2 ∈ R,∀r3 ∈ R :

¬P(s,ContactsProvider_r, r1)

∨ (P(s,ContactsProvider_r, r2)

∧¬P(s,network, r3))
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BirthdayNotifier

Contacts CONTACTS_READ

New application

RECEIVE_BIRTHDAY
WRITE_SMS

SMS messages

Figure 5.1: Example of flow policy violation. The BirthdayNotifier compo-
nent reads contact information from the contact store. Information about the
contacts whose birthday is today is broadcasted to components that possess the
RECEIVE_BIRTHDAY permission. The new application that is to be installed
would be able to obtain contact information from the content provider, through
the BirthdayNotifier component, without requesting the CONTACTS_READ
permission. Since this component also requests the WRITE_SMS permission, in-
formation may flow from the contact store to the SMS store, which might be
prohibited by security policy. SCanDroid will analyse the code of the new applica-
tion to determine whether or not the contact information might flow into the SMS
store.

Rights dependence can be used to require an application that requests a certain

permission, that it also requests another specific permission. For example,

the following predicate encodes the question “Can application s be installed

such that if it can write to ContactsProvider, then it can also read from it?”:

pat
3
(s) = ∀r1 ∈ R,∃{r2, r3} ∈ R :

¬P(s,ContactsProvider_w, r1)

∨ (P(s,ContactsProvider_w, r2)

∧ P(s,ContactsProvider_r, r3))

5.3 Information flow analysis with SCanDroid

A flow of information may have unintended security consequences with respect

to secrecy and integrity. For example, a flow from store A to store B is unwanted

if the data in store A is intended to be secret – i.e. requires a read permission –

while store B is readable by any application. This same flow is also unwanted if

the data in store B is intended to be trusted – i.e. requires a write permission –
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while the data in store A may be tainted. An information flow that might violate

secrecy is illustrated in Figure 5.1, which SCanDroid would flag as dangerous.

Fuchs, et al. have developed the SCanDroid framework that performs informa-

tion flow analysis on an Android application to track how information from one

store moves towards another store [12]. This approach allows Android users to

determine whether applications that request permission to multiple information

stores – e.g. read access to a private store and write access to a public store – will

not transfer private information towards the public store.

SCanDroid consist of two logical parts. The first part will be discussed in

Section 5.3.1 and processes individual applications, which result in a set of appli-

cation flows, which are encoded in the form of a mapping from inflow tags to a set

of outflow tags. Inflow tags are attached to points where data can flow into an ap-

plication, such as the result of a content provider query, outflow tags are attached

to points where data can flow out of the application, such as content provider up-

date queries. One information flow can thus be described by the interface (inflow

tag) where it enters the application and the interface (outflow tag) where it leaves

the application.

The second part of SCanDroid will be discussed in Section 5.3.2 and combines

the information flows of a set of applications with permission information from the

respective manifest files and transforms this information into a set of permission

constraints. The set of permission constraints is then combined with the policy

constraints and checked for consistency; if no contradictions exist, it is known

that – given the policy – no dangerous information flows exist in the verified set

of applications.

5.3.1 Analysis of a single application

The following is an overview of the architectural components for the flow analysis

of a single application, which results in a mapping from inflow tags to a set of

outflow tags. This part of the analysis is illustrated in Figure 5.2.

Bytecode loader The instructions of an application are encoded in a bytecode

format; an instruction set which is not native to the CPU of a device, but is

interpreted by a virtual machine to allow an application to run on multiple

platforms. The bytecode loader reads the instructions for the class files that

make up an application and uses this information to construct a call graph.

To facilitate further processing of the call graph, several processing steps

are performed such as the replacement of Android API implementations by

stubs2 to decrease processing time for known and trusted components.

2In this case, a stub is an implementation of a class or an interface that doens’t contain an actual
implementation.
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Bytecode

Bytecode loader Inflow filter

Flow analysis

Outflow filterString/data analysis

Application flows

Figure 5.2: Flow extraction for single application. An extensive description of the
individual steps is presented in Section 5.3.1.

The bytecode loader also performs pointer analysis on the bytecode instruc-

tions and adds context-sensitive information to specific method invocations.

This analysis is mostly used to disambiguate data structures returned by

methods. In particular, precise information about strings is retrieved, which

is then used by the string analysis component.

String/data analysis Textual information is processed in several ways through-

out the bytecode. For example, Java code that manipulates String objects

is transformed by the compiler into instructions that manipulate StringBuilder

objects, as this offers much higher performance and often has a lower mem-

ory footprint, especially for complex or extensive manipulations. As a result,

bytecode often contains instructions to coerce texts among several different

object classes.

The output of the string/data analysis phase is a map from instance keys

(identifiers used in subsequent steps) for String and Uri objects to actual

strings.

Inflow filter Data flows into an application at certain interfaces, or data sources,
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which can be identified precisely. The inflow filter determines all the in-

terfaces where information flows into an application and introduces an in-

stance key for each source, which is then mapped onto a unique tag. The

instance keys are used by the flow analysis framework to track how informa-

tion is transferred between variables, while the tags are used in the output

of the application analysis and correspond to the inflow tags discussed in

the introduction of Section 5.3.1.

Flow analysis The flow analysis phase tracks how information that has entered

an application is transferred between variables and methods. The frame-

work makes use of a type system that has been published earlier by one of

the authors of the framework [5] and tracks how data flows from instance

keys – as assigned by the inflow filter – and local variables to other instance

keys and local variables.

The analysis maintains a set of flow identifiers that represent domain ele-

ments – e.g. variables, method arguments – that can hold data. The output

of the flow analysis phase is a mapping from flow identifiers to a set of

(inflow) tags. In other words: the output of this phase records for each do-

main element which input interfaces can contribute to the information that

is stored in the domain element.

Outflow filter The result of the flow analysis records information about all do-

main elements, while only a few of these will flow information out of the

components. Therefore, the outflow filter identifies all sinks where informa-

tion may leave the application an will connect these with outflow tags. By

transforming the information available from the flow analysis, the output of

the outflow filter is a mapping from inflow tag to a set of outflow tags, which

subsequently represents the set of application flows that form the output of

the single application flow analysis part.

5.3.2 Combining application flow analyses

The analysis of information flows inside a single application, as described in Sec-

tion 5.3.1, can be performed for an application, without taking other applications

into account. The result of this analysis is a set of application flows, which describe

how information that flows into an application can flow out of the application.

This information is used by the second part of SCanDroid to determine whether

dangerous information flows exist when a certain set of applications are installed

on a single device.

Following is an overview of the components involved in the second part of a

complete SCanDroid analysis, which is also illustrated in Figure 5.3.
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Figure 5.3: Combining application flows

Manifest loader Since the manifest file contains information about the compo-

nents that are part of the application and how these individual components

interact with the Android system, SCanDroid needs to obtain this informa-

tion in order to create a complete analysis. The manifest loader therefore

parses the manifest files of individual applications and determines how ap-

plication components will interact after installation. The manifest loader

also attaches the permissions that are enforced and requested by manifest

declarations to the corresponding interactions.

Checker The checker combines the information from the application flows and

the manifest files into a verdict whether or not dangerous information flows

can occur, given a policy that dictates what flows are considered danger-

ous. The checker works by describing a partially ordered set ≥, that main-

tains the reflexivity, transitivity and antisymmetry properties. Elements

in ≥ are sets of permissions, thus an example of a natural constraint is

{INTERNET,CONTACTS_READ} ≥ {CONTACTS_READ}.

However, singletons are not necessarily unrelated. The example used in Fig-

ure 5.1 demonstrates a situation where installation of the new application

introduces the constraint {CONTACTS_READ} ≥ {RECEIVE_BIRTHDAY}.

A security policy can be expressed as a set of constraints on ≥, e.g. the con-

straint Px � Pz can be used to express the fact that the set of permissions Pz

is unrelated or strictly higher than Px . The secrecy statement “reading con-

tact information is an unrelated or strictly higher privilege than reading SMS
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messages” – which is used Figure 5.1 – can be encoded using the following

constraint: {READ_SMS} � {CONTACTS_READ}. Using such constraints,

also integrity statements can be encoded, e.g. “writing contact information

is an unrelated or strictly higher privilege than writing mail attachments”

can be encoded as {CONTACTS_WRITE}� {ATTACHMENTS_WRITE}.

The checker determines whether a contradiction arises when all policy con-

straints and all constraints that follow from information flows are combined.

When such a contradiction arises, it is known that a flow that violates the

security policy might exist. Since SCanDroid analyses information flow of

applications individually, this process can be done in an incremental way.

Every time a new application is installed, the system gets monotonically

more constrained. As soon as a contradiction arises, installation of the new

application should be aborted or an existing application should be unin-

stalled.

5.4 Apex permission model extensions

Nauman, et al. [16] have designed the Apex framework that extends the Android

permission model to allow more flexibility towards the user. The limitation that

Apex is designed to overcome is the fact that the Android design automatically

grants all permissions that an application requests. As discussed in Section 4.2.2,

the only way to deny certain permissions in Android is to abort the installation of

an application altogether. Consequently, the only way to revoke permissions that

an installed application already possesses is to remove the entire application from

the device.

In Apex, permissions that an application requests are not automatically granted.

The framework allows the user to specify conditions that must be met in order for

an application to be granted the requested permission. Besides the capability for

the user to unconditionally grant or deny a permission, Apex is capable of evalu-

ating condition expressions, such that a user can conditionally grant a permission.

Examples of conditions that a user can apply to permissions are:

• Application A is allowed to apply the SEND_SMS permission at most five

times a day;

• Application A is allowed to use the ACCESS_FINE_LOCATION permission

only between 9:00 and 17:00;

• Application A is unconditionally denied access to use the INTERNET permis-

sion; and
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• Application A is allowed to use either the CONTACTS_READ permission or

the SEND_SMS permission, but not both.

As described in Section 3.2, the PackageManager is the implementation of

all permission checking operations. Therefore, the authors of Apex have modified

the PackageManager, such that after the existing checks have been performed,

the AccessManager component is invoked. The AccessManager is not part of

the standard Android framework, but has been added by the Apex authors.

The AccessManager invokes the PolicyResolver, which in turn uses an

XML file to evaluate whether or not the requested permission is currently granted.

The XML file contains the permission policy as it has been defined by the user.

5.5 Discussion

The previous sections described improvements that have been proposed in various

papers. Section 5.2 described Kirin, a framework that allows devices to enforce se-

curity requirements based on permission information from manifest files. Section

5.3 described SCanDroid, an information flow analyser that can verify whether

the installation of a new application may introduce a dangerous flow. Section 5.4

described Apex, a framework that allows users to conditionally grant permissions

that have been requested by applications. This section discusses several aspects of

these three improvements.

5.5.1 Implementations

The authors of all three frameworks have written a proof of concept to demon-

strate the feasibility of their ideas.

Kirin has been implemented as an Android application that runs on a phone

and evaluates invariants using only application packages as input, but the authors

are working on a tighter integration with the standard package installation system

[8].

SCanDroid has been implemented as an application that is not running on a

phone, but rather on an external system. The application implements the com-

ponents that have been described in Section 5.3 and analyses a set of Android

applications to generate a set of constraints that result in a verdict [12]. The au-

thors of SCanDroid indicate that the per-application information flow analysis can

readily be performed by a third party, certifying the set of application flows that

are the result of the first phase. The results of this first phase are unrelated to the

actual security policy, so the second part is the only part that needs to be included

into the Android system.
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The authors of Apex have implemented the framework by adapting the source

code of the Android system, such that it is tightly integrated. This was necessary,

since it modifies the PackageManager to alter the permission checking logic,

which is impossible for applications running on top of the framework [16].

5.5.2 Effectiveness of Kirin and SCanDroid

The Kirin and SCanDroid frameworks both encode security policies and make sure

those are enforced when the user requests the installation of a new application.

Kirin casts a verdict based solely on the manifest file of the application, while

SCanDroid uses information flow of the new application together with the infor-

mation flow of all existing applications to cast a verdict. This difference makes

that Kirin is by definition much less precise and may report more false positives.

The situation may even be worse when the developer of a set of application re-

quests a shared user ID, where Kirin must cast a verdict using the union of the

permission sets.

For example, an application that requests a combination of permissions that

may be harmful would be flagged as dangerous – given that this combination

of permissions has been encoded as dangerous in the manifest file – by Kirin,

while SCanDroid would be able to allow this application, given that no actual

information flow exists that may violate an encoded secrecy or integrity policy.

A disadvantage of both frameworks is that the policies must be designed up-

front and are based on blacklisting. In the case of Kirin this means that a policy

writer can create sets of permissions that are considered dangerous, but any com-

bination that haven’t been explicitly encoded as dangerous is considered to be safe

by default. In the case of SCanDroid, the policy writer must create a set of con-

straints by deciding what information flows are dangerous. In the same way, any

information flow that is not explicitly encoded into the constraint set is therefore

considered safe by the framework.

One disadvantage of SCanDroid is that it needs significantly more processing

power to reach a verdict, compared to Kirin. However, since the information flow

analysis part can be outsourced to a trusted party that can subsequently issue a

certification over the resulting information flow data, this disadvantage can largely

be addressed.

One problem of SCanDroid – which the authors of the framework did not

seem to notice – is the fact that uninstallation of an application does only prevent

unwanted information flows in the future. However, before the application had

been uninstalled, secret information may already have flown into a store that has

not explicitly been marked as secret. For example, consider a situation with three

stores SA, SB and SC and a policy that disallows any flow of information from SA
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to SC . Now, let’s say an existing application has moved a datum x from SA to

SB. When the user wants to install a new application that contains an information

flow from SB to SC , SCanDroid would flag the situation and prevent installation.

This quote from Fuchs, et al. [12] presents two options to the user:

... which means that it is dangerous to let these applications coexist

on the same Android device: either the former application should be

uninstalled, or the latter application should not be installed.

Although uninstalling the former application will prevent an active information

flow from store SA to store SC to exist, the datum x might still flow into SC and

therefore violate the policy. Therefore, the only way to definitely prevent policy

violations is to ensure that SCanDroid keeps taking the information flows of all

previously installed applications into account. In the discussed situation, unin-

stalling the existing application should not be sufficient to allow installation of the

new application.

5.5.3 Apex effectiveness

Apex doesn’t have the disadvantage that policies must be written upfront, as dis-

cussed in Section 5.5.2. Apex allows the user to revoke permissions when an

application is installed, so he can review the actual set of permission and can rea-

son about the result that it may have. A disadvantage is that he may forget about

certain known dangerous combinations at the time he is installing an application

he wants to use. Additionally, the user won’t be able to know what information

flows exist in the application and could therefore make an uninformed decision.

An advantage that Apex introduces is the fact that users can start using appli-

cations with a limited set of permissions and extend the set of granted permissions

later. This allows a user to gradually gain trust in the legitimacy of an application,

compared to the immediate trust that must be given in the current situation. The

other way around is also possible: when a user learns that an application he uses

is malfunctioning he can decide to remove unwanted permissions and keep using

the application in a restricted environment.

However, Apex has some disadvantages. Most importantly, with the current

Android model, application developers expect their application to possess all per-

missions that have been requested in the manifest file. Therefore, they often

lack proper handling of unexpected SecurityException exceptions, which is

thrown when an operation is requested that the application doesn’t have permis-

sion to. Since the SecurityException is a runtime exception, Java methods

are not required to declare this exception and are always allowed to throw it. As

a result, it may be assumed that most applications will not catch the exception at
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all, allowing the exception to travel down the call stack until it reaches the end

of the stack, causing the thread to finish. When this happens in the main thread,

Android will display a message to the user that the application has crashed and

will stop the application process.

5.5.4 Native code assessment

As described in Chapter 2, Android applications are mostly written in Java, but

may contain native code written in C or C++. The information flow analysis of

SCanDroid is focussed on analysing the Java code and can therefore not be used to

analyse applications that contain native code. However, in theory the framework

could be extended to take these flows into account. The authors haven’t discussed

this issue in [12].

Because both the Kirin framework and the Apex framework are not dependent

on any code or bytecode, they can be used for native code in exactly the way

they have been designed. The only relevant part of an application package that

is used by these frameworks is the set of permission that have been requested

in the manifest file. Kirin only uses this information to determine whether the

installation of an application may proceed. The permission checking modifications

that are used by Apex are written in system components that are invoked when

privileges operations are requested, regardless of whether such operations are

requested from Java or native code.

5.5.5 Combining frameworks

Very powerful options become available when two frameworks are combined.

Most notably, either Kirin and Apex can be combined or SCanDroid and Apex.

When installing an application on a device that has been equipped with the Kirin

framework, the installation procedure may be aborted by Kirin when the set of re-

quested permissions violate the security policy. By combining Kirin with Apex, the

user would be allowed to deny specific permissions, such that the set of granted

permissions does not violate the security policy and Kirin would allow installation.

SCanDroid and Apex can be combined into a powerful partnership in the same

way as possible with Kirin. When the installation of a new application would

introduce dangerous informations flows, a framework that combines the concepts

of SCanDroid and Apex would be able to determine what set of permissions should

be denied or revoked to prevent the creation of such flows.
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5.6 Conclusion

One general improvement has been discussed and three frameworks that are de-

signed to overcome certain vulnerabilities. The general improvement is to in-

troduce a finer grained permission system for some elements, in particular for

recording audio and contacting the Internet. The Kirin framework has been pre-

sented that allows a security policy to be created, such that a Prolog engine can

determine whether installing a new application will violate the security policy.

The SCanDroid framework is an off-device framework that is capable of analising

the flow of information through an application, such that an on-device component

can combine the information flow statistics of the set of installed applications to

determine whether a dangerous flow – i.e. one that violates secrecy or integrity

of important information – exists. The Apex framework allows the user to define

a flexible policy for granting permissions to an application, for example based on

time of day or the number of times the application invoked a certain operation.

Each of these frameworks introduces a specific enhancement to the Android secu-

rity model, eliminating some vulnerabilities that exist in the current model.

46



6

Improving the permission model: the
introduction of �ne-grained Internet permissions

Chapter 4 presented several vulnerabilities that are present in the current model

and Chapter 5 discussed several improvements proposed in existing research. Sec-

tion 4.2.1 discusses the problem of permission granularity and Section 5.1 pro-

poses a change. This chapter presents a proposal for a more fine-grained Internet

permission model as the answer to the fifth subquestion:

Q5. How can the permission model be improved to fix the identified

vulnerabilities?

6.1 Constraining sockets

The improvement to the Android permission model this thesis presents is to allow

more fine-grained control over the resources an application can access via a net-

work connection. As described in Section 4.2.1, applications with the INTERNET

permission have access to the entire Internet. However, most application only

need access to a small set of resources and the principle of least privilege dic-

tates that such application should only have access to those resources it needs to

function correctly.

In Linux – and therefore in Android – communication using the Internet Proto-

col is possible by using sockets. A socket is an object in the kernel and represents

a single communication channel. The operations that are available on a socket

depend on the type of the socket, the address family in which the socket operates

– e.g. IPv4, UNIX domain or bluetooth address family – and the state the socket

is in. This chapter focuses on constraining communication with the Internet, so

therefore this description will be limited to sockets in the AF_INET and AF_INET6

address families, which are used when communication using IP version 4, respec-

tively IP version 6.

This chapter introduces a method to constrain the use of sockets. To limit the

scope of the project, the following requirements are set:
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• The behavior of the system must not change for application that possess the

INTERNET permission;

• Applications that don’t possess the INTERNET permission must only be able

to connect to a constrained set of resources specified by a white-listing pol-

icy; any resource not explicitly covered by the policy must not be reachable;

• The modifications must only change behavior for TCP sockets; applications

without the INTERNET permission must therefore still be unable to use UDP

or lower layer protocols, like raw IP;

• Applications that don’t possess the INTERNET permission must only be able

to connect to ports that are specified by a white-listing policy; an application

cannot listen on any port number that is not explicitly covered by the policy;

• Applications that don’t possess the INTERNET permission must only be able

to receive incoming connections from hosts that are specified by a white-

listing policy; any host that is not explicitly covered by the policy must

therefore be unable to initiate a connection to the application;

• Application that don’t possess the INTERNET permission must not be able to

control the local address and port number allocation for outgoing connec-

tion, i.e. they cannot use the bind system call to bind a socket to a specific

address and port.

The goal of these modifications is to allow applications to specify the smallest

set of resources they need access to in order to be able to perform their job. For

example, a Twitter application may request access to connect to the HTTP port on

api.twitter.com.

Three alternative solutions have been investigated to meet the set require-

ments. The following subsections describe these solutions, including a brief dis-

cussion about the advantages and disadvantages.

6.1.1 Modifying socket syscall

To allow applications to connect to a specific set of hosts, the application must

be able to create a new socket. Therefore, the permission check on the socket

system call must be removed and replaced by one or more permission checks in

other system calls.

The socket system call returns a file descriptor, that the application can use

to initiate a new connection using the connect system call. Since the application

provides the IP address of the remote host to the connect system call, the kernel

can enforce a policy for outgoing connections at the entry point of connect.
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For incoming connections, multiple system calls are used to set up a connec-

tion. First, an application calls bind to inform the kernel of the local address and

port number that will be used for communication. Second, the application calls

listen to inform the kernel to start accepting incoming connection requests – i.e.

TCP frames with the SYN flag set – instead of automatically denying all connection

requests.

Finally, the accept system call is used by the application to obtain a file de-

scriptor for a new incoming connection. This system call may block for an inde-

terminate time when no incoming connection request is received by the operating

system. Enforcing the source host name for incoming connections can be per-

formed either by the network stack as soon as the connection request is received

or by the accept system call just before the connection is about to be handed to

the application.

Restricting the port numbers the application is able to use is a little more dif-

ficult. The information is passed to the kernel using the bind system call. At this

point, disallowed port numbers could be blocked by returning an error message

from the system call. However, the bind system call can also be used by an ap-

plication when it wants to enforce a certain port number of IP address is used in

outgoing connection requests. As a result, the policy should be enforced at the

entry point of the listen system call.

Two disadvantages of this method exist that make it hard to deploy this method

without breaking compatibility with existing applications:

• Since the connect system call will only obtain the remote IP address from

the application, the policy can only be based on IP addresses or must be able

to link hostnames and IP addresses when evaluating the policy.

• To resolve a hostname, the application needs to contact a DNS server. The

policy of every application must therefore include access to the IP addresses

of the DNS server. Since the configured address of the DNS server might

change – e.g. when switching from WiFi to GPRS – the policy must be

updated more often. Additionally, a malicious application can use DNS tun-

neling [28] to transfer information from and to the device, even without

possessing any permission to contact the Internet.

6.1.2 Using the netfilter subsystem

The netfilter subsystem is part of the Linux kernel and allows system administra-

tors to implement a network firewall by creating a chain of rules that are evaluated

by the network stack for incoming and outgoing IP packets. Every rule in a chain

contains a condition – which is evaluated against the packet that is being tested –
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and a target. When the packet matches the condition, the target will be executed,

which in the most basic cases can be ACCEPT or DROP.

One of the netfilter modules allows a user ID of the process that has created

the socket to be tested as part of the condition of a rule. Since Android allocates

a unique user ID for each application, this module effectively allows filtering rules

to be targeted to specific applications. This method would also allow separate rule

chains to be constructed for different network connections, e.g. a WiFi rule chain,

a GPRS chain for a mobile connection with the provider and a separate roaming

GPRS chain.

An important advantage of this method is that it reuses existing code in the

Linux kernel that has been tested in production environments for years. The net-

filter subsystem is capable of filtering both outgoing and incoming connections.

However, the disadvantages that have been listed in Section 6.1.1 are also

applicable to this method. Another disadvantage of this method is that it will

not prevent an application from listening on a port that is not white-listed in the

policy. Although netfilter is capable of implementing a list of white-listed port

numbers, it is not capable to enforce a per application white-list for port numbers.

This means it is unable to white-list a port for a single application, while keeping

it unavailable to other applications.

6.1.3 Using a trusted socket creator

Another method to allow application to connect to a specific set of hosts is to of-

fload the calls to the socket and connect system calls to a separate process and

to do the same with the combination of bind, listen and accept system calls.

With this method, applications that possess the INTERNET permission have unre-

stricted access to the Internet, while applications that do not have this permission

have to rely on the offloading procedure to obtain a connected socket.

Since this method can be implemented on a much higher level compared to

the methods presented in Sections 6.1.1 and 6.1.2, the actual string that the ap-

plication uses to represent the remote host is visible, which, in most times, is a

hostname rather than an IP address. Therefore, the offloaded socket connector is

responsible for resolving the hostname to an IP address, so it’s not necessary for

the application to be able to contact a DNS server. Also, this allows the policy to

be based on hostnames rather than only IP address.

6.2 Comparison of the potential solutions

To select which of the solutions will be investigated in the remainder of this chap-

ter, a set of properties has been compiled. The following tables compares the three
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Application (Java)

java.net.Socket

Resolve
hostname

Create
socket

Kernel socket interface

TCP networking stack

Network interface
(WiFi, GPRS)

TSC

MS

NF

Figure 6.1: Policy enforcement moments. When an application requests a new
connection, it uses the java.net.Socket class. The trusted socket creator (TSC)
solution modifies the implementation at this place. The Java libraries create a
socket in the kernel to resolve the hostname to an IP address and create another
socket that is used for the outgoing connection. Both steps use the kernel socket
interface, which will enforce a policy when modifying the socket system call
(MS). Eventually, the TCP protocol stack transmits and receives IP packets to/from
a networking interface. The netfilter (NF) subsystem is located at the connection
between those two components.
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solutions using this set of properties, the subsections below give a discussion for

each of these properties. In the table, column MS refers to the modified socket

system call (see Section 6.1.1), column NF refers to the netfilter solution (see Sec-

tion 6.1.2) and column TSC refers to the trusted socket creator mechanism (see

Section 6.1.3). Additionally, Figure 6.1 visually presents the positions in the flow

of establishing a network connection where the three solution would enforce a

policy.

MS NF TSC

Differentiate connection type (eg. WiFi, GPRS) Ø Ø Ø
Use hostname in policy Ø
Target port-listening policy to specific app Ø Ø
Can be integrated with Apex (see Section 5.4) Ø
Existing connections will follow real-time policy change Ø
Allows unchanged Java code to use sockets Ø Ø Ø
Allows unchanged native code to use sockets Ø Ø
Covert communication through DNS can be prevented Ø

6.2.1 Differentiate connection type

For all three solutions, the policy can differentiate between the currently used con-

nection type by the device. The most naive implementation could use separated

policies for the different connection types, such that the policy enforcement part

will switch between active policies when the network connection switches.

The socket system call can determine the currently used connection type by

determining over what network interface the default gateway is reachable to select

the currently active network policy. However, it may be impossible to determine

whether the device is currently using the home network of the mobile operator or

is roaming using this method. The netfilter solution can differentiate the outgoing

network interface for each individual packet, a functionality which is already in-

cluded in the subsystem and is often used in Linux-based personal and corporate

firewalls.

Using the trusted socket creator mechanism, the trusted application can query

the Android system for the currently used connection type at the moment a request

for a new connection is being processed. Since this query is handled at higher

levels, the system can differentiate between a device using the home network of

the mobile operator or the network of a foreignoperator, allowing a higher level

of granularity for policy decisions.
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6.2.2 Use hostname in policy

Both the modified socket system call solution and the netfilter solution can only

handle policies that are based on IP addresses. This is true for the modified

socket system call solutions, because the socket system call is passed an IP

address, which has been resolved by the application before requesting a network

connection to be established. This is also true for the netfilter solution, because

it operates on IP packets that have already been constructed by the operating sys-

tem and inserted into the networking subsystem. Please note that IP packets only

contain IP addresses for the source and destination fields and are unaware of the

concept of hostnames.

The trusted socket creator mechanism is functioning on a higher level.

Java applications normally request a connection to a hostname and the Java

java.net.Socket class resolves the hostname to an IP address before it request

the operating system to establish a connection. Therefore, implementing a policy

enforcement on this level allows the policy to be based on hostnames, rather than

IP addresses.

6.2.3 Target port-listening policy

To enforce a port-listening policy using the modified socket system call solution,

the listen system call must be modified to enforce a policy that determines what

ports an application is allowed to listen on. Among the information available to

the kernel during a system call is the user ID of the process that performed the call,

which the kernel can resolve to an individual application or a set of applications

that have requested a shared user ID. Therefore, separate policies can be enforced

for individual applications.

Using the netfilter solution, there is no way to prevent an application to initiate

a listening operation on any port number. The netfilter subsystem is only invoked

at the time a packet is received from a remote host that indicates a new connection

is requested. At that time, a policy can be enforced that allows or disallows certain

remote hosts to communicate with the system or the specific port number, but this

policy is system-wide and cannot be targeted to a specific application.

Since a trusted socket creator solution has knowledge of which application

requested a listening socket and what port number has been requested, it can

target a port-listening policy to a specific application.

6.2.4 Integration with Apex

Apex (see Section 5.4) extends the mechanism used by the Android platform to

decide whether a requested action is authorized. It does so by extending the ap-
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propriate methods in the PackageManager, much like the trusted socket creator

mechanism is implemented. The main difference is that the trusted socket creator

adds additional methods to the PackageManager, while Apex modifies existing

ones. The modifications made by Apex can also be performed on the methods that

have been introduced for the trusted socket creator, such that a modified version

of the policy engine used by Apex can be used to implement extended policies for

the trusted socket creator mechanism.

To implement the two other solutions, changes have to be made to very differ-

ent subsystems of Linux. Therefore, integrating it with Apex will not be possible,

or at least be much more difficult compared to doing the integration of Apex with

the trusted socket creator mechanism.

6.2.5 Real-time policy change

The proof of concept implementation of the trusted socket creator mechanism

uses a network policy that is defined in the manifest file of an application and is

therefore static. However, the policy can also be created by the user of the device,

instead of an application developer, giving the user much more control over the

network connections that application on his device can create. When this power

is placed in the hands of the user, he can change the policy of application while

they are running.

When using the modified socket system call solution or the trusted socket

creator solution, any connection that has been established by an application will

not be affected when the user changes the network policy that applies to that

application. This is the case, since in both solutions the network policy is only

checked at the time a new connection is created.

Using the netfilter solution, each and every individual packet is passed through

the packet filtering subsystem of the Linux kernal and is tested against a chain of

rules. When the chain of rules is modified, it will affect packets that are transmit-

ted in the context of an existing packets. As a result, this solution allows the user

to immediately shut down an unwanted network connection without requiring the

application to be closed and restarted.

With additional effort, it would be possible to implement this behaviour when

using a modified socket system call or when using the trusted socket creator.

These efforts would require the system to keep track of open sockets and to which

remote systems they are connected and require the system to iterate over the set

of open sockets when the user changes the policy to verify whether any open

connections are disallowed by the new policy. The connection can in turn be shut

down using the shutdown system call, disallowing the application to use the open

file descriptor any longer for communicating with the remote endpoint.
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Alternatively, when using a trusted socket creator mechanism, it is possible

to not return the file descriptor to a socket to the requesting application, but in-

stead return a reference to an object that can be used for communication in the

same way the getListeningSocket method returns an object that can be used

to accept incoming connections. This way, the application will never hold a file

descriptor to the socket and the PackageManager is therefore in the position to

close existing connection when the policy is changed. However, this alternative

will degrade performance of data transfers, since use of the interprocess commu-

nication mechanism would be required for all communication that is performed

on sockets created in this way.

6.2.6 Required code changes

Except for disallowed connections, a modified socket system call behaves exactly

like the original one, so therefore no code need to be changed in Java or native ap-

plications that create sockets. The same can be said for the netfilter solution, since

the only difference will be that packets that are sent to disallowed destinations are

dropped or rejected with an error message.

This is different for the solution using the trusted socket creator. Since the An-

droid version of the socket system call will always fail when called by application

that don’t possess the INTERNET permission, native applications trying to create

sockets will always get an error message when they use this system call. Instead,

native application must be rewritten, such that they use the intercomponent com-

munication framework to request a connected socket from the PackageManager.

For application written in Java, this isn’t an issue, since the Java libraries have

been extended, such that they behave in exactly the same way as the original

Android version, except when a requested connection is not allowed.

Most native application use the C library to create sockets, instead of directly

calling the system calls. It is possible to modify the C library, such that the calls

are intercepted and forwarded to the PackageManager, but such implementation

should somehow relate functions calls that are used to translate a hostname into

an IP address to function calls that are used to establish a network connection.

This will be a complex task and prone to programming mistakes.

6.2.7 Preventing covert DNS channels

In 2008, Van Leijenhorst, et al. researched the viability of using DNS as a transport

to covertly transfer information out of a host into the Internet or the other way

around [28]. When an application that doesn’t possess the INTERNET permission

is capable of using DNS, this must not open up a covert channel that can be used

by malicious applications.
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When using the modified socket system call solution or the netfilter solution,

application are responsible for resolving a hostname into an IP address, before

being able to initiate a network connection. Therefore, the policy that is enforced

when using one of those methods must allow communication with the DNS server,

opening up the ability to abuse this channel for covert communication.

Alternatively, the C library could be modified, such that application that use

functions in this library to resolve hostnames automatically use a trusted service

in the system. Although this opens up the same channel, it might became less

practical, since application will no longer be able to take complete control over

the packets that are sent towards the DNS server.

The trusted socket creator solution proposed in the previous chapter effec-

tively prevents such covert channel. The network policy is defined in terms of

hostnames, rather than IP addresses, and the application isn’t responsible for re-

solving hostnames into IP addresses, which is done by the PackageManager. The

latter property implies that no DNS server needs to be allowed by the network pol-

icy.

Since the network policy is based on hostnames, the PackageManager will

block outgoing connection requests based on hostname, even before DNS will be

used to resolve such a hostname into an IP address. Therefore an application is

unable to use DNS as a covert channel, unless a wildcard allow line is used (e.g.

*.dnstunnel.com) that would open up communication to such hosts anyway.

6.2.8 Selecting a solution

Overall, the trusted socket creator solution has the most checkmarks, with the

listed disadvantages to be that it may not be able to propagate a changed policy

onto already established connections that are no longer allowed under the new

policy and that native code that uses sockets needs to be modified to be functional.

Since most applications are written in Java and native code is mainly used in

Android application for performance critical sections of an application this may

not be a problem. Due to the latency and bandwidth limitation of any network

connection compared to the computation speed of the central processing unit,

network communication will never be part of the performance critical sections

of an application. Even if a developer decides this is the case, he is still able to

construct sockets in native code, but must use the interprocess communication

framework. After a file descriptor to a kernel socket has been obtained, the actual

communication can still take place in exactly the same way as is currently done in

native code.

Because of these reasons, the trusted socket creator mechanism has been se-

lected as the solution to research and implement in a proof of concept. The re-
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UNCONNECTED
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DISCONNECTING

inet_create()

inet_accept()

Figure 6.2: Linux socket state machine. Sockets that are constructed via the
socket system call will initially be in the UNCONNECTED state; socket that
are constructed via the accept system call will initially be in the CONNECTED
state. Notice that no transition is possible when one of the CONNECTED or
DISCONNECTING states are reached.

mainder of this chapter will therefore focus on this solution.

6.3 Socket state machine

Sockets in the AF_INET and AF_INET6 address families can be created in two

ways: either by calling the socket system call to allocate a new, unconnected

socket in the kernel or by calling the accept system call to accept an incoming

connection request and allocate a socket that represents this new connection. The

information about the socket state machine used by the Linux kernel is based on

the source code in the files in the /common/net/ipv4/ directory of the Linux

kernel source tree.

6.3.1 Outgoing TCP connections

After a socket has been allocated using the socket system call, it is placed in the

UNCONNECTED state, as depicted in the state machine in Figure 6.2. The connect

system call performs a transition into the CONNECTING state. When in this state,

the connection request has been sent to the remote host, but no acknowledgment

has been received by the system.
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The socket remains in this state until the system receives the acknowledgment

and transitions the socket into the CONNECTED state, the connection request is

canceled by the application, receives an error message – e.g. the system is un-

reachable or no process is listening on the requested port – or the connection

attempt times out. In those latter two cases, the socket is transitioned back into

the UNCONNECTED state. When the connection request is canceled by the appli-

cation, the socket is transitioned into the DISCONNECTING state. Note that when

the socket is in the CONNECTED state and is closed by the application, the socket is

deallocated and will therefore not transition into the DISCONNECTED state. How-

ever, the network stack will keep some state in memory to properly inform the

remote host of this action.

6.3.2 Incoming TCP connections

When an allocated socket is used to accept incoming connections, the listen

system call does not transition the socket to a different state. In fact, a socket

that is listening for incoming connections can be reused to initiate an outgoing

connection using the connect system call after using the shutdown system call

to cancel the listening operation. As soon as a connection request is received

and accepted by the application using the accept system call, a new socket is

allocated in the CONNECTED state.

Currently, the INTERNET permission is enforced by the socket system call.

Since allocating a new socket using the accept system call requires an existing

socket that must have been constructed using the socket system call, accept

doesn’t need to enforce the INTERNET permission. As a result, the only way

for a process that doesn’t possess the INTERNET permission to obtain a socket is

through the inter-component communication methods that have been described

in Section 3.1.

6.3.3 After the CONNECTED state

Once a socket has reached the CONNECTED state – either by finishing a connect

operation or by being allocated by the accept system call – it is not able to

transition into another state.

Using the close system call, the application can inform the operating system

that the connection to the remote system should be terminated and the socket in

the kernel can be deallocated. Deallocating the socket means that the entire state

is removed from the memory and therefore no state transition happens after the

CONNECTED state.

A file descriptor to a socket that currently is in the CONNECTED state can be

used to send data to and receive data from the remote endpoint and can be used to
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change certain options on the socket that govern behavior and performance char-

acteristics of this connection. System calls list bind, listen and connect return

an error when they are passed a file descriptor to a socket in the CONNECTED state.

6.4 Implementation details

This section describes the modifications that has been done to the Android source

code in order to implement a proof of concept for the policy enforcement method

presented in Section 6.1.3. The components depicted in Figure 6.3 displays the

components that have been modified and are involved in the creation of socket

objects using the trusted socket creator concept.

In Java, the networking API is located in the java.net package. The

most important classes in this respect are the java.net.Socket and

java.net.ServerSocket classes. The implementation of the Socket class is

modular, allowing different socket providers to provide an implementation. By

default, an implementation provided by the Apache Harmony project [26] is used

that uses JNI to eventually perform system calls like socket and connect. Host-

name resolution is performed by the java.net.InetAddress class hierarchy,

which uses functions in the C library to translate between hostnames and IP ad-

dresses. The C library uses the socket system calls to handle these requests.

The modular socket design allows a SocketImplFactory to be regis-

tered, which is invoked when a new Socket is instantiated. This results in a

SocketImpl object, that is references by the Socket object and which will per-

form the actual socket operations. For the proof of concept of the trusted socket

connector principle, the SocketImpl class has been extended, such that the

methods involved with creating and connecting new sockets are overridden with

an implementation that outsources these operations to the PackageManager.

6.4.1 Custom SocketImpl implementation

The custom SocketImpl – named PMSocketImpl to reflect the fact that

operations are outsourced to the PackageManager – extends the existing

PlainSocketImpl class that is part of the Apache Harmony implementation.

This design allows the reuse of the code in the PlainSocketImpl class, by only

overriding a small subset of the methods: bind, connect, create, listen and

accept.

6.4.2 Outgoing TCP connections

When a new socket is created and connected to a remote host, the create, bind

and connect methods are invoked on the SocketImpl object. First, the create
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java.net.Socket

PMSocketImplFactory

PMSocketImpl

PackageManager
getConnectedSocket()

instantiation

Figure 6.3: Socket classes involved in obtaining a file descriptor to a socket in the
kernel. When a new Socket class is instantiated by an application, it requests an
implementation class to be instantiated by the PMSocketImplFactor. When the
application requests a socket to be created and connect to a remote host, it invokes
methods on the Socket object, which delegates those tasks to the PMSocketImpl
implementation. The PMSocketImpl class invokes getConnectedSocket on
the PackageManager, such that a socket is created in the kernel and a connection
request is initiated.

method is invoked, which normally results in the socket system call. The file

descriptor of the new socket is stored in a member field of the implementation

class. Second, the bind method is invoked to bind the socket to a local address.

Finally, the connect method is invoked and the address of the remote host to

connect to is passed as a parameter.

Regarding outgoing TCP connections, the create and bind methods in the

PMSocketImpl class are effectively a no-operation method, since it doesn’t per-

form any system call or intercomponent communication. These methods are over-

ridden to prevent the default implementation in the PlainSocketImpl class

to be executed, which would result in an exception to be thrown because the

INTERNET permission is missing and therefore use of the socket system call is

blocked.

The connect method uses the intercomponent communication facilities

available in Android – which have been described in Section 3.1 – to in-

voke the getConnectedSocket method on the PackageManager. The

PackageManager is part of the Android framework and has been extended with

this method as part of this thesis. The getConnectedSocket method is there-

fore executed in the system_server process, which possesses the INTERNET

permissions that is required to actually create a socket in the kernel.
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The getConnectedSocket combines the operations of resolving the host-

name to an IP address, creating a socket and connecting it to the requested remote

host. Only when the socket has been fully connected – and therefore the state ma-

chine in the kernel is in the CONNECTED state – the file descriptor of the socket is

returned back to the calling application. Any problem that occurs when resolving

the hostname, creating the socket or connecting to the remote host is passed back

to the application.

Next, the PMSocketImpl parses the response from the

getConnectedSocket invocation. When a problem has occurred, the error code

is used to construct the appropriate exception – e.g. UnknownHostException

or SocketTimeoutException – and a human-readable message is included,

such that the behavior of this implementation is identical when compared to the

default implementation provided by Apache Harmony. When no problem has

occurred, the file descriptor is stored in the appropriate member field, such that

the methods that are implemented in the PlainSocketImpl superclass will use

this file descriptor and act as expected.

6.4.3 Incoming TCP connections

For incoming TCP connections, an application in Java uses the ServerSocket

class to set up a socket in the kernel that is registered to a specific TCP port num-

ber to listen for incoming connection requests. When a ServerSocket object is

instantiated, it obtains a SocketImpl class and invokes the create, bind and

listen methods to set up a socket and put it into a listening mode.

After successfully putting a socket into listening mode, an application can ob-

tain a connected socket using the accept system call. This system call first polls

a queue of waiting connection requests and returns a file descriptor to the first

socket that is waiting. If no incoming connection request is waiting, the accept

system call blocks and the thread of execution is put to sleep until a new connec-

tion request is received. At that point in time, the thread wakes up and returns a

file descriptor to the new socket.

When a ServerSocket has attached to a TCP port number, the application

can invoke the accept method to retrieve a Socket object that represents a

connection to the remote endpoint that initiated the connection. The accept

method invokes an equally named method on the referenced SocketImpl class,

which is passed a reference to the new Socket object. The accept method of

the SocketImpl class obtains the file descriptor from the accept system call and

stores it in the Socket object that has been passed in.

The custom PMSocketImpl overrides the bind, listen and accept meth-

ods. For setting up a server socket, the bind method just stores the local IP
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Application PackageManager

getListeningSocket

(a) Application invokes getListeningSocket on the PackageManager, which returns a reference
to an IListeningSocket object.

Application PackageManager

IListeningSocket
accept

(b) Application invokes accept on the IListeningSocket, which returns the file descriptor to a
socket connected to a remote host that initiated a connection.

Application PackageManager

Socket
(with file descriptor)

read, write, close

(c) Application invokes data transfer operations directly on the file descriptor without using the Inter-
Component Communication framework.

Figure 6.4: Application accepting an incoming connection. First, the applica-
tion invokes getListeningSocket on the PackageManager, which allocates
an IListeningSocket in the process of the PackageManager which holds
a file descriptor to a socket that is placed into listening mode (a). The appli-
cation can accept an incoming connection request by invoking accept on the
IListeningSocket object (b). The application places the file descriptor in a
Socket object, on which all required methods can be invoked locally (c).
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address and port number that are passed, which indicate the local port that the

application wants to listen on. When the listen method is invoked, the stored

local endpoint identification is sent to the getListeningSocket method in the

PackageManager. This methods verifies whether the requesting application is

allowed to listen on the specified TCP port and sets up the listening socket if this

is the case.

If the getListeningSocket method were to return a file descriptor that

is put into listening mode, the application would be able to reuse this socket to

connect to other hosts by directly using system calls and that way it would by-

pass the policy enforcement as described in Section 6.3.2. Instead an object that

implements the IListeningSocket is returned to the application, which imple-

ments a close and a accept method. The application can invoke these methods

through the IBinder framework.

The PMSocketImpl class stores the IListeningSocket reference that is

returned by the accept method in a member field. When the socket is closed

– e.g. the application invokes the close method of the ServerSocket class –

the close method on the IListeningSocket class is invoked. Note that the

application doesn’t have a file descriptor that gives access to the listening socket,

but has a reference to an object in the PackageManager that in turn controls a

listening socket. The PackageManager is therefore in the position to enforce a

security policy.

When the accept method is invoked on the IListeningSocket that has

been instantiated by the getListeningSocket method, the accept system

call is invoked. As soon as it returns, the IP address and port number of the

remote endpoint are requested through the file descriptor to the new socket,

such that it can be tested against a policy for incoming connections. If the

identification matches any policy entry, the file descriptor to the new socket –

which is in the CONNECTED state – is returned to the application. Otherwise, a

SecurityException is returned.

As soon as the accept invocation returns, the PMSocketImpl class stores the

retrieved file descriptor in a newly created SocketImpl object, which is returned

to the application in the form of a Socket object. This Socket object can be

used for communication with the endpoint that initiated the connection. The

entire process is displayed in Figure 6.4.

6.4.4 Process termination

When an application ends and the (Linux) process terminates, all file descrip-

tors that are held by this process are automatically closed. In effect, this means

that sockets that are used by the application are closed, regardless of whether
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the socket was used for an outgoing connection, an incoming connection or is

currently in a listening mode waiting for new incoming connection requests.

When using the trusted socket creator mechanism, file descriptors to sockets

are held in an external process with respect to the application process that uses

them. When the PackageManager is used to create a socket for an outgoing

connection, it will only hold the file descriptor for the period required to establish

the connection and pass it back to the requesting application. After this has been

done, the file descriptor held by the PackageManager is closed and therefore the

requesting application is the only one with the file descriptor. When the applica-

tion process terminates, the kernel will therefore automatically close the socket

and tear down the TCP connection.

The same is true for incoming TCP connections as soon as they are accepted.

However, the socket that is placed in listening mode and that is waiting for new

incoming connection requests is never passed to the application process and there-

fore is only reachable from the process that hosts the PackageManager. When

the application that initiated the listening operation is terminated, the socket will

therefore not be closed automatically by the kernel.

As a result, the PackageManager must monitor the requesting process and

explicitly close the listening socket at the moment the process terminates. The An-

droid inter-component communication framework provides a notification mecha-

nism that can be used to correctly handle the situation that arises when the process

that hosts a referenced object terminates, such that the application that holds the

reference can take appropriate action.

To use this mechanism, the getListeningSocket method accepts an addi-

tional argument that allows the requesting application to pass a reference to any

IBinder object that resides in the process. The PackageManager registers a

DeathRecipient object that will be invoked as soon as the application process

terminates and the IBinder object will not be reachable anymore. The event

handler will close the listening socket.

6.5 Socket policy

When the implementation explained in Section 6.4.1 is in place, the

getConnectedSocket method is the entry point for application that don’t pos-

sess the INTERNET permission to obtain a socket and be able to communicate

with other systems. Therefore, this method is the location to implement the policy

enforcement logic. For incoming connections, the getListeningSocket and

accept methods are the entry points for setting up a listening socket and accept-

ing incoming connections.
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To specify what systems an application may connect to, a policy must be de-

fined. The definition for the implemented policy has been inspired by the Java

2 SocketPermission[25] definition. A policy consists of zero or more “allow

lines” that are included in the manifest file of the application. An application

with no allow lines cannot access any host; each allow line grants access to an

additional set of hosts or TCP ports.

The format of individual allow lines has been taken from the Java 2

SocketPermission policy format. Using EBNF1 notation, an allow line is de-

fined as:

allow−l i n e = ( hostname | domain−s u f f i x | ip−address ) ,

[ : portrange ] ;

hostname = (name−part , ‘ . ’ ) ∗ , (name−par t ) ;

domain−s u f f i x = ‘ ∗ . ’ , hostname ;

ip−address = ip4−address | ( ‘ [ ’ , ip6−address , ‘ ] ’ ) ;

ip4−address = ‘ ‘ IPv4 address in dotted notat ion ’ ’ ;

ip6−address = ‘ ‘ IPv6 address in RFC 1924 notat ion ’ ’ ;

portrange = portnumber , [ ‘− ’ , [portnumber ] ] ;

portnumber = ‘ ‘ TCP port number ’ ’ ;

Thus, such an allow line specifies the host or set of hosts that it applies to and

optionally a port number or a range of port numbers. The host can be specified as

either an IP address (e.g. 131.155.2.83), a hostname (e.g. “www.tue.nl”) or a set

of hosts that share a domain (e.g. “*.win.tue.nl”).

Using this syntax, the following are examples of valid allow lines:

mail.example.com:143 Grant access to the IMAP port (143) on

mail.example.com

10.0.0.24:6667-6670 Grant access to the ports 6667, 6668, 6669 and 6670

on the host with IP address 10.0.0.24

[ff02::fb] Grant access to all TCP ports of the IPv6 mDNS address ff02::fb

*.example.com:80 Grant access to the HTTP port (80) of all hosts

that are in the example.com domain, e.g. www.example.com and

www.department.example.com

ftp.example.com:21 Grant access to the FTP port (21) on

ftp.example.com

ftp.example.com:1024- Grant access to ports 1024 and above on

ftp.example.com

1Extended Backus-Naur Form
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The policy for incoming connections is two-fold: the first policy contains a list

of port numbers that the application may listen on and the second policy contains

a list of remote endpoints that are allowed to connect to the application. The

remote endpoint policy resembles the one described for outgoing connections,

except that using hostnames is not possible, as the remote endpoint is identified

by an IP address.

6.5.1 Policy enforcement

To enforce the defined policy, the getConnectedSocket,

getListeningSocket and accept methods must verify whether a connection

or listening request is allowed according to the policy, before creating the socket

and initiating the connection establishment. Therefore, the PackageManager has

also been extended with some methods that can check the socket permission for

a given application. The checkConnectPermission method iterates over the

set of allow lines applicable to an application and determines whether or not the

requested connection is allowed. The checkAcceptPermission does the same,

but uses the set of incoming allow lines. Finally, the checkListenPermission

method iterates over the set of allowed port numbers to determine whether a

requested getListeningSocket invocation is allowed.

When the checkConnectPermission or checkAcceptPermission meth-

ods iterates over the set of allow lines, the first line that matches will cause

the method to finish and return PERMISSION_GRANTED. However, when no

allow line matches the hostname and port number of the resource the appli-

cation wants to connect, the method will return PERMISSION_DENIED. When

PERMISSION_DENIED is returned, the getConnectedSocket method will abort

the request and return a SecurityException to the requesting application

or the accept method will close the newly accepted connection and return a

SecurityException to the requesting application.

The checkListenPermission iterates over the set of port numbers that are

allowed for this application. When the port number that the application requested

to listen on is present in this set, the method will return PERMISSION_GRANTED,

causing getListeningSocket to proceed with creating a ServerSocket and

placing it in listening mode on the requested port. When the requested port num-

ber is not present in the list of allowed port numbers, checkListenPermission

returns PERMISSION_DENIED and a SecurityException is returned to the re-

questing application.

The result is that applications that don’t have the INTERNET permission can

still communicate with the Internet when more fine-grained permissions are spec-

ified. Outgoing connections can only be established to hosts and ports that are
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allowed by the outgoing policy, while incoming connection are only possible to

allowed port numbers and from hosts that are allowed by the policy.

6.6 Conclusion

This chapter proposed an enhancement of the Android permission model, such

that a more fine-grained Internet policy can be enforced for individual applica-

tions. Three alternative solutions have been introduced: 1) one based on modify-

ing the socket system call, 2) one based on the netfilter packet filtering subsys-

tem of the Linux kernel and 3) one based on a trusted socket creator that enforces

a network policy when establishing new connections. The remainder of the chap-

ter presented a solution based on the trusted socket creator concept. It has been

explained that TCP sockets cannot be reused for communication with other hosts

after they have been connected to an endpoint. The result of this enhancement is

that application developers can now request access to particular hosts and ports

on the Internet, instead of requesting access to the entire Internet, solving the ob-

jections raised by Barrera, et al. in [3]. Consequently, this proposal incorporates

the principle of least privilege into the Android platform regarding Internet access.
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7

Conclusion and future work

7.1 Proof of concept

A proof of concept of the trusted socket creator mechanism has been created by

the author to demonstrate the feasibility of this solution as described in Sections

6.4 and 6.5.1. To test the modifications, an application that uses the java.net.*

classes has been created that establishes a connection to a remote host and writes

debug log messages when the connection has been established and when an ex-

ception has been caught. As expected, connections to hosts that are not allowed

by the policy are denied and a SecurityException was thrown, while for all

connection requests to hosts that are allowed by the policy, the behaviour didn’t

change with respect to the original functionality of the Android platform.

In the same way, the scenario of incoming connections has been tested by

requesting a listening socket on a port number that is allowed by the policy and

establishing a connection to this port number from a remote host. Requesting a

listening socket on a port number that’s not included in the policy is successfully

rejected and results in a SecurityException to be thrown.

Most applications don’t use the java.net.* classes directly, but rely on higher

layer classes that implement protocol details. For example, opening an HTTP con-

nection is usually performed using the java.net.URL classes that are part of

the standard Java class hierarchy. These classes internally use the java.net.*

classes to actually set up a network connection, but also implement the client role

of an HTTP message exchange.

To test the functionality of the proof of concept implementation, an application

has been created that has a single allow line “*.google.com:80”, which allows the

application to only connect to port 80 on any host that belongs to the google.com

domain. Since the default behavior of Google is to redirect the user to a country-

specific website like google.nl, the Java HTTP client automatically tries to connect

to this host to retrieved the redirected document. However, this host is denied

by the policy and therefore a SecurityException is thrown. The process is

illustrated in Figure 7.1.
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Application Socket creator

www.google.com:80

GET /

302 Redirect

www.google.nl:80

SecurityException*.google.com:80

getConnectedSocket()

getConnectedSocket()

Connected socket

(a)

(b)

(c)

Figure 7.1: Application connecting to the Google homepage. The application re-
quests a socket that is connected to a connection to www.google.com on port
80 (a) and requests the homepage of the website using an HTTP request (b). The
webserver determines the country from which the request originated and redirects
the client to a local version of the search engine, for example www.google.nl. Fol-
lowing the redirect, the client tries to open a connection to www.google.nl on port
80 (c). Since this endpoint doesn’t match any allow line, the connection request
is denied and a SecurityException is returned.

7.2 Conclusion

This thesis attempted to come to an answer to the following research question, as

introduced in Section 1.1:

How can the permission model employed by the Android smartphone platform

be improved, such that some known weaknesses are fixed and the existing protection

and usability are preserved?

Following the results of the five subquestions – which are presented with an

anser in the next subsection – and the work presented in Chapter 6 and discussed

in this chapter, the following answer to the research question that serves as the

topic of this thesis can be formulated:

Using a trusted socket creator that is not under the control of the application that

requests network communication, the Android platform can be extended to support a

more fine-grained permission model for Internet access, which fixes the weakness that

follows from the coarse-grained INTERNET permission without reducing the usability

of the Android platform or any application.
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7.2.1 Subquestions

For each of the individual subquestions presented in Section 1.2, an answer has

been formulated, which are presented in this subsection.

Q1. How is the current Android permission model designed?

Chapter 2 describes how the current permission model is designed in Android.

Applications contain a manifest file that state a set of permissions they need to

operate correctly. During installation of an application, the user can either grant

access to those permissions and resume the installation or deny access and abort

the installation of the application.

Q2. Which platform component(s) contribute to the implementation

of the permission model?

A very important mechanism in enforcing the permission model is the intercom-

ponent communication mechanism explained in Section 3.1, which allows ap-

plication components to communicate with components that are hosted in dif-

ferent Linux processes. In this way, the PackageManager component – which

is part of the Android platform and described in Section 3.2 – is hosted in the

system_process process, which cannot be influenced by other applications. The

PackageManager is the component that implements the decision-making part of

the permission model, while individual services are responsible for querying the

PackageManager to determine whether the requestion application has permis-

sion to perform the requested operation or access the requested resource.

Q3. What vulnerabilities are known to exist in the current model?

Several vulnerabilities have been identified in the current model, which are de-

scribed in Chapter 4. One of the vulnerabilities that have been presented in Sec-

tion 4.2.1 is the fact that 60% of the applications in the Android Market request

the INTERNET permission, allowing them to communicate with any host on the

Internet. Since a lot of application only request this permission to be able to re-

trieve advertisements from Internet hosts, research like [3] propose a fine-grained

permission system for Internet access as a future enhancement to Android.

Q4. What improvements have already been developed?

Several improvements have been proposed, which have been summarized in Chap-

ter 5. Three frameworks have been presented: Kirin (Section 5.2), SCanDroid

(Section 5.3) and Apex (Section 5.4). Chapter 5 includes a discussion about these
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frameworks and proposes advantages that can be gained by combining the frame-

works.

Q5. How can the permission model be improved to fix the identified

vulnerabilities?

Three solutions have been identified to implement a fine-grained policy for In-

ternet access into the Android permission model, which have been described in

Section 6.1. The remainder of Chapter 6 forms the contribution of this thesis and

presents the concept of a trusted socket creator, which allows applications to ob-

tain a file descriptor to a connected socket, such that the PackageManager is

capable of enforcing a fine-grained network policy over outgoing and incoming

network connections.

7.3 Future work

The solution presented in Chapter 6 has been scoped to only include TCP com-

munication. In future research, this can be extended to include more types of

communication and more expressive policies.

7.3.1 UDP

When using TCP, the kernel maintains a state machine that disallows a socket to

move from the CONNECTED state into any other state. Therefore, TCP sockets that

have been connected cannot be reused to communicate with another host. The

concept of connecting to a remote host is also inherent in TCP, as it is designed

to allow two-way communication between two hosts that keep a state to remain

synchronized.

Since UDP is designed as a connectionless protocol, the concept of “connect-

ing” to a remote host is not applicable to the protocol. To use UDP sockets in

Linux, an application uses the same socket API that is used for TCP. This means

the connect system call is available and has actually been implemented for UDP.

After using this system call, all sending operations use this destination address

by default and all receiving operations discard data coming from different source

addresses. This is mainly used to ease application programming when using UDP

to communicate with a single remote host.

While the connect system call mimics the behaviour of a TCP connect for UDP,

no state machine is maintained by the kernel to enforce proper connection control.

As a result, it is possible to call connect multiple times on the same socket, each

time changing the remote address stored by the kernel. Effectively, this allows an

application that has a file descriptor to a UDP socket to communicate with any
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UDP host that is reachable. Therefore, to enforce a network policy, an application

must never receive a file descriptor to a UDP socket.

7.3.2 Extended policies

The kind of policies that are implemented for this thesis are rather fixed and are

created by the application developer. For some applications this may be sufficient,

i.e. applications that know a priori to what hosts they are going to connect. While

a Facebook or Twitter application falls in this category, applications like generic

mail clients that allow the user to configure the mail server to use are unable to

benefit from such extension.

It may therefore be a nice extension to allow a user to define the policy. For

example, a mail client application may contain a settings activity which is used to

configure the mail server to connect to. When the mail server setting is changed,

the application can invoke a system activity that asks user consent for connecting

to the specified host and modifies the network policy for the application accord-

ingly. Another possible way to do this is to ask the user to make a decision for any

connection request that isn’t matched by the current policy.

When socket creation is outsourced to the system server, more dynamic policies

can be implemented in exactly the way it has been done by Apex (see Section 5.4).

This way, access to certain hosts can be based on other properties like time of day

or limited to a certain number of allowed connections per day.

An extended policy may also take the currenlty available connection types

into account, which may especially be useful when the user has the capability to

influence the policy. As an example, a user may want to create a policy that allows

an application to contact specific servers when connected to the Internet using

either a WiFi connection or the mobile network of the operator, while disallowing

the access to those same servers when roaming on the mobile network of a foreign

operator.
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Glossary

Marshalling Transforming a structure of connected objects, e.g. in a Java envi-

ronment, into a stream of bytes or characters, that can be transmitted over

a communication channel.

Unmarshalling The reverse operation of marshalling, i.e. transforming a stream

of bytes or characters into a structure of linked objects.

Virtual Machine A software implementation of a certain instruction set, allowing

application encoded in that instruction set to be executed on hardware that

uses a different instruction set. A virtual machine can also act like a logical

barrier between code running inside and code running outside the virtual

machine.
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